
Evolution of a modular software network
Miguel A. Fortunaa,b, Juan A. Bonachelaa, and Simon A. Levina,1

aDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1003; bIntegrative Ecology Group, Estación Biológica de
Doñana–Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain

Contributed by Simon A. Levin, September 30, 2011 (sent for review June 30, 2011)

“Evolution behaves like a tinkerer” (François Jacob, Science, 1977).
Software systems provide a singular opportunity to understand
biological processes using concepts from network theory. The
Debian GNU/Linux operating system allows us to explore the evo-
lution of a complex network in a unique way. The modular design
detected during its growth is based on the reuse of existing code
in order to minimize costs during programming. The increase of
modularity experienced by the system over time has not counter-
balanced the increase in incompatibilities between software
packages within modules. This negative effect is far from being a
failure of design. A random process of package installation shows
that the higher the modularity, the larger the fraction of packages
working properly in a local computer. The decrease in the relative
number of conflicts between packages from different modules
avoids a failure in the functionality of one package spreading
throughout the entire system. Some potential analogies with the
evolutionary and ecological processes determining the structure
of ecological networks of interacting species are discussed.

network evolution ∣ evolvability ∣ robustness ∣ community assembly ∣
food webs

Complex systems represented by networks pervade all sciences
(1). Since the publication, 10 yr ago, of studies focused on

the topological characterization and dynamical implications of
networks of very different nature (2–8), little progress has been
made on understanding the evolution of such complex systems
(see, however, refs. 9–11). Most studies assume that the architec-
ture of these networks is static. However, on the World-Wide
Web, pages and links are created and lost every minute (12). The
structure of the current power grid depends on how it has grown
over the years (13), and food webs are shaped continually through
community assembly processes (14). Unraveling how these com-
plex networks grow and change through time is a crucial task for
understanding their long-term dynamics.

Software systems, as computer operating systems, are under
the constraints of hardware architecture and user requirements
(15). Functionality is the main goal of software design. Develo-
pers need to make the system capable of accomplishing new tasks
without excessive cost, so that modifying or adding a single fea-
ture does not require the update of preexisting code throughout
the system. This ability to reuse existing code allows the system
to build up in a modular and hierarchical fashion (16). The dis-
tributed and collaborative nature of software design, in which
many individuals work only on small pieces of the whole system,
requires developing a strategy to support software growth without
losing functionality. Indeed, this attributed modular approach
can enhance functionality (17, 18).

Such design is expected to improve evolvability by limiting
the interference between different functions. These interferences
are a consequence of the software development process itself
and may reduce the functional diversification of the operating
system. For example, incompatibilities among functionally similar
libraries required by different groups of programs may impede
the correct installation of a complete set of software packages.
Therefore, there is a trade-off between reusing many pieces of
existing code and the emergence of incompatibilities among soft-
ware packages.

The Debian GNU/Linux operating system offers a unique
opportunity to study the evolution of this trade-off over time,
due to its package interaction system and its release schedule
(see Fig. 1). In Debian, most software packages reuse code of
others in order to work properly (i.e., dependencies; package i
needs package j for being functional) or have incompatibilities
with other packages that impede the former to be installed in the
same local computer (i.e., conflicts; package i prevents package j
from being installed; see Materials and Methods).

In this paper, we first characterize the evolving modular struc-
ture of the network of dependencies between software packages
for the first 10 releases of the Debian GNU/Linux operating
system. Second, we explore the role of conflicts between packages
in determining the functionality of the system by using a package
installation process in a local computer. Last, we discuss potential
parallelisms between the architecture and dynamics of software
networks and that of ecological webs of interacting species.

Results
We have compiled the binary i386 packages, including their
dependencies and conflicts, of the first major stable versions of
the Debian/GNU operating system released since the project be-
gan in 1993 (see Materials and Methods and SI Appendix). The
growth of the Debian/GNU Linux operating system from one
release to the subsequent is summarized in three steps: some
packages are deprecated, others are kept between versions, and
new ones are added (see Fig. 2). The number of packages that
are deprecated between releases and those that persisted in-
creased exponentially over time (F1;7 ¼ 693.5, p < 0.001, and
F1;7 ¼ 165.2, p < 0.001, respectively; see Materials and Methods).
The number of new packages added in the most recent version
was slightly smaller than in the previous one. If we discard it from
the analysis, the number of new packages also increased exponen-
tially over time (F1;6 ¼ 216.9, p < 0.001). The total number of
packages, dependencies, and conflicts increased exponentially
with each version, ranging from 448 to 28,245 (F1;8 ¼ 1;117.8,
p < 0.001), from 539 to 101,521 (F1;8 ¼ 603.1, p < 0.001), and
from 28 to 4,755 (F1;8 ¼ 307.1, p < 0.001), respectively (see SI
Appendix, Table S1). Data from the most recent release seem
to indicate the beginning of an asymptotic stationary behavior
for the growth of both packages and interactions (their exclusion
from the regression analysis increased the fit to F1;7 ¼ 1;064.6,
p < 0.001, and to F1;7 ¼ 466.8, p < 0.001, for dependencies
and conflicts, respectively). Neither the ratio between the number
of dependencies and the number of conflicts, nor the fraction
of packages without any interactions showed a linear tendency
over time (F1;8 ¼ 1.5, p ¼ 0.263, 21.2� 5.18 mean and standard
deviation; and F1;8 ¼ 0.078, p ¼ 0.787, 0.132:� 0.054 mean and
standard deviation, respectively).

The cumulative degree distribution for the outgoing depen-
dencies (number of packages necessary for i to work) fit an

Author contributions: M.A.F. designed research; M.A.F. and J.A.B. performed research;
M.A.F. and J.A.B. analyzed data; M.A.F. contributed new reagents/analytic tools; and
M.A.F., J.A.B., and S.A.L. wrote the paper.

The authors declare no conflict of interest.
1To whom correspondence should be addressed. E-mail: slevin@princeton.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1115960108/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1115960108 PNAS Early Edition ∣ 1 of 5

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental

exponential function (F1;2 ¼ 114.2, F1;2 ¼ 358.1, F1;2 ¼ 1;331.8,
F1;3 ¼ 291.4, F1;3 ¼ 299.3, F1;4 ¼ 158.4, F1;5 ¼ 117.1,
F1;5 ¼ 795.2, F1;5 ¼ 358.1, and F1;5 ¼ 280.8 for all releases, re-
spectively; p < 0.001 in all cases; see Fig. 3). This fit means that
there is a well-defined average number of packages that are used
by others (see SI Appendix, Fig. S1). However, the cumulative
degree distribution for the incoming dependencies (number of
packages that need i to work) fit a power law function
(F1;5 ¼ 583.4, F1;5 ¼ 445.7, F1;7 ¼ 2;403.3, F1;8 ¼ 3;661.2,
F1;9 ¼ 3;278.6, F1;10 ¼ 945.6, F1;10 ¼ 1;068.1, F1;1 ¼ 721.7, and
F1;11 ¼ 900.4 for all releases, respectively; p < 0.001 in all cases;
see Fig. 3). This fit indicates that a small number of packages are
used by the vast majority, whereas many programs are needed

only by a few packages (see also SI Appendix, Fig. S1). In other
words, the network of dependencies showed a scale-free distribu-
tion for the incoming dependencies over time, indicating that the
new packages added on successive releases depended mainly on
the most connected ones (i.e., those packages used by many
others).

The modular structure of the network of dependencies was
statistically significant for all releases (ranging between 0.497 and
0.564; p < 0.001 in all cases). The Z score obtained for allowing
the comparison of the modularity across networks (see Materials
and Methods) increased exponentially from the first version to the
sixth (9.664 and 135.703, respectively; F1;4 ¼ 163.9, p < 0.001).
Since then, it has remained around a lower stationary value
(44.555� 11.669, mean and standard deviation, respectively;
p ¼ 0.858 for a linear regression). Although a significant linear
relationship between the number of modules and the number
of packages with dependencies is found for each version
(F1;8 ¼ 245.8, p < 0.001), the number of modules containing at
least 5% of the total number of packages for each version re-

Fig. 1. Dependencies and conflicts between packages during the installa-
tion of the Debian GNU/Linux operating system. Package i depends on pack-
age j (green arrows) if package j has to be installed first on the computer for i
to work. Package i has a conflict with package j (red arrows) if package i can-
not be installed if j is already on the computer. Packages, represented by
nodes, are available for installation from the online servers or repositories
(indicated in the figure by the cloud). The character of the interaction be-
tween packages determines which ones can be eventually installed on the
computer. In this specific example, green nodes (1–4) represent packages al-
ready installed on the computer. For the network of packages in the cloud,
only the package represented by the yellow node (5) can be installed on the
computer. Package 6 has a conflict with an already installed package (2), and
the remaining ones (7–10) depend directly or indirectly on it. In this schematic
local installation process, only half of the available packages can be installed
on the computer. Different temporal sequences in the order of package in-
stallation will result in different sets of installed packages or, in other words,
functionalities of the operating system (i.e., fraction of installed packages
of the total number of available packages).

Fig. 2. Schematic representation of the growth of the Debian GNU/Linux operating system through its first major releases. Circles depict releases and are
arranged following the temporal sequence (from left to right). Their area is proportional to the logarithm of the number of packages in each release. Three
arrows represent the transition between releases: The outgoing arrow indicates the number of packages that are deprecated from one release to the other;
the incoming arrows represent the number of packages that give rise to the next release (some of them are updated from the previous release and the others
are new packages). The number on the last node indicates the number of packages of the last analyzed release.

Fig. 3. Cumulative degree distribution of the number of incoming (solid
lines) and outgoing (dashed lines) dependencies for the software packages
of the first and last releases (on top and on bottom, respectively) of the De-
bian GNU/Linux operating system analyzed here. The figures depict the prob-
ability, PðkÞ, for a package to depend on or to be needed by at least 1;2;3;…;k
packages to work. Both axes are in logarithmic scale. In all cases, the best fit
for the outgoing dependencies is an exponential function, whereas for the
incoming dependencies is a power law (see also SI Appendix, Fig. S1).

2 of 5 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1115960108 Fortuna et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf

mained constant through time (6.7� 0.67, mean and standard
deviation, respectively; F1;8 ¼ 1.5, p ¼ 0.250; see SI Appendix,
Fig. S2). Therefore, the new modules originated in subsequent
releases contained few packages, indicating that the bulk of new
packages added over time joined to the few large modules created
in the earliest versions (see Fig. 4 and SI Appendix, Fig. S3).

Yet, the fraction of conflicts within modules increased linearly
over time (ranging from 0.50 to 0.74; F1;8 ¼ 30.45, p < 0.001)
while the fraction of dependencies within modules remained con-
stant (0.677� 0.031, mean and standard deviation, respectively;
F1;8 ¼ 0.05, p ¼ 0.831; see Fig. 4 and SI Appendix, Fig. S4).
Therefore, the increase in the modularity of the dependencies
has not avoided the conflicts within modules during the exponen-
tial growth of the operating system. This fact means that, as the
modular structure of the network of dependencies increased (up
to the sixth release), the fraction of conflicts between modules
decreased (Fig. 4). Since then, although the modular structure
has not grown significantly, the fraction of conflicts between mod-
ules has continued decreasing.

The dynamical implications of this result are shown by a ran-
dom process of package installation in a local computer (see Fig. 1
andMaterials and Methods). The fraction of packages that can be
installed by a random process decreased linearly through time
(ranging from 0.957 to 0.711; F1;8 ¼ 40.1, p < 0.001). A priori,
we might think that the higher the modularity of the network,
the lower the functionality of the operating system, measured
as number of packages installed from the pool of available soft-
ware. However, other factors, such as the number of conflicts
between packages (which also increased over time) may be re-
sponsible for the reduction in the fraction of software installed.
To rule this effect out, we performed a random process of pack-
age installation in which the modular structure of the network of
dependencies is deliberately broken by a local rewiring algorithm
(see Materials and Methods). Hence, we can estimate the effect
of the modular structure on the installation process. In almost
all versions, the modularity of the network of dependencies in-
creased significantly the fraction of packages installed in a local
computer compared with what is expected from the randomiza-
tion (p < 0.01, except for releases 2.0 and 3.0, p ¼ 0.14 and

p ¼ 0.10, respectively). The Z score calculated to compare this
effect across releases (see Materials and Methods) did not show
a significant linear increase over time until release 3.0 (1.685�
0.569, mean and standard deviation, respectively; F1;5 ¼ 0.059,
p ¼ 0.818). Since then, the Z score increased notably (ranging
from 17.9 to 30.1; see Fig. 5).

In summary, from release 1.1 to release 2.2, the significant
exponential increase of the modularity of the network of depen-
dencies (measured by the Z score) did not cause a significant
positive effect on the fraction of software packages installed.
However, from release 3.1 to the last release analyzed (5.0), the
lower and nonincreasing modularity was responsible for a positive
strong effect on the fraction of software installed in a local com-
puter (Fig. 5). Debian 3.1, released in 2005, proved to be a break
point between these two opposite tendencies. Although versions
3.0 and 3.1 increased the amount of software to practically double
the size of the previous release, Debian 3.1 updated 73% of the
packages found in Debian 3.0. These and other important
changes are mainly the result of the long time elapsed since the
previous version was released (almost 3 y, the longest interval
between releases in the history of Debian).

Discussion
The increase of the modular structure of the operating system
over time detected in this paper seems to be an effective strategy
for allowing the growth of software, minimizing the risk of col-
lapse due to failures in the functionality of some packages. This
strategy has also been reported for the ecological and evolution-
ary processes structuring food webs (19). The failure in the func-
tionality of a software package, or the extinction of a species in an
ecological community, would not propagate its negative effects
to packages (species) from other modules, minimizing the risk
of a collapse of the entire system. Therefore, understanding
the evolution of a computer operating system can shed light

Fig. 4. Evolution of the modular structure of the network of dependencies
between packages of the Debian GNU/Linux operating system. Packages are
represented by nodes. A green arrow from package i to package j indicates
that package i depends on package j, and a red arrow indicates that package
i has a conflict with package j. Packages within a module (depicted by a big
circle) have many dependencies between themselves and only a few with
packages from other modules. During the growth of the operating system,
the modular structure of the network of dependencies has increased: (I) The
new packages added in successive releases depended mainly on previously
existing packages within the same module, and hence, the size of the mod-
ules created in earlier releases increased over time; (ii) the number of mod-
ules also increased, although the new modules consisted only of a few new
packages; and (iii) the relative number of dependencies between packages
from different modules decreased. Moreover, the relative number of con-
flicts between packages from different modules decreased, whereas those
within modules increased through the different releases of the operating
system.

Fig. 5. Changes of the modular structure (measured as the Z score of the
modularity compared to a randomization of themodular structure) and func-
tionality (measured as the Z score of the fraction of packages installed in a
local computer compared to that installed from a randomization of the mod-
ular structure) for the network of dependencies of the releases of Debian
GNU/Linux operating system analyzed here. The positive effects of the mod-
ular structure on the functionality shows up strongly in the last three releases
(linear increase), although the exponential increase of the modularity hap-
pens in the first ones.

Fortuna et al. PNAS Early Edition ∣ 3 of 5

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf

on the evolutionary and ecological constraints shaping commu-
nities of interacting species. For example, we can investigate how
species richness increases without jeopardizing the coexistence
of the entire community. Minimizing the risks of competitive
exclusion between species playing the same role in a community
is equivalent to reducing software incompatibilities between mod-
ules of dependencies to increase functionally. The spatial segre-
gation in the distribution of species represents an effective
modular process analogous to the compartmentalization of the
software network: It allows a higher regional species richness
(software packages pool) at the expense of reducing local diver-
sity minimizing competitive exclusion.

The Debian GNU/Linux operating system provides a unique
opportunity to make this and other analogies within the evolu-
tionary and ecological framework, determining the structure of
ecological networks of interacting species. Both processes occur
at different timescales. On the evolutionary timescale, speciation
and extinction (i.e., macroevolution) can be translated into the
creation of new packages and the deprecation of those rendered
obsolete from one version to the next. On the ecological time-
scale, colonization and local extinction (i.e., community assem-
bly) would be equivalent to the package installation process in a
local computer. Dependencies and conflicts between packages
mimic predator–prey interactions and competitive exclusion re-
lationships, respectively. Because of these relations, only a subset
of the available packages can be installed in a computer because
only a subset of the species pool can coexist in a local ecological
community. Moreover, there is an interplay between macroevo-
lution and community assembly, because the interactions intro-
duced by the new species (packages) alter the dynamics of the
colonization/extinction (installation) in a local community
(computer).

Conclusions
During the exponential growth of the Debian GNU/Linux oper-
ating system, the reuse of existing code showed a scale-free dis-
tribution for the incoming dependencies and an exponential one
for the outgoing dependencies. The modularity of the network
of dependencies between packages as well and the number of
structural modules increased over time. However, this increase
in modularity did not avoid the increase in software incompatibil-
ities within modules. Far from being a failure of software design,
the modular structure of the network allows a larger fraction of
the pool of available software to work properly in a local compu-
ter when the installation follows a random process. Decreasing
conflicts between modules impedes the exclusion of entire mod-
ules of packages from the installation process. This positive
effect of the modular structure was much larger in the last three
releases, although the increase in modularity was not as high as it
was for the first ones.

Further research on network evolution and local assembly
dynamics in this and in other engineer systems will open an
opportunity window for biologists and computer scientists to col-
laborate and address fundamental problems in biology. Let us
keep in mind the words of Uri Alon (20): “The similarity between
the creations of a tinkerer and engineer also raises a fundamental
scientific challenge: understanding the laws of nature that unite
evolved and designed systems.”

Materials and Methods
Dataset. In the Debian GNU/Linux operating system, most software packages
depend on or have conflicts with other packages in order to be installed on a
local computer. By “dependencies” (package i depends on package j), we
mean that package j has to be installed first on the computer for i to work.
By “conflicts” (package i has a conflict with package j), we mean that pack-
age i cannot be installed if j is already on the computer. However, this fact
does not necessarily mean that package j also has a conflict with package i:
Sometimes package j is an improved version of package i in a way that if i

is already installed in the system, then j improves it, but if j is installed then
it already contains i and the latter cannot be installed. We have compiled
the list of software packages, along with the network of dependencies
and conflicts, of the 10 major versions released since 1996. The list of
packages and interactions can be downloaded from the Web site of this
journal (see SI Appendix for more details).

Statistical Analysis. We have performed exponential regressions to quantify
the increase in the number of packages that were deprecated, the new ones
that were added, and those that persisted among the 10 releases analyzed.
We also characterized the increase in the number of dependencies and
conflicts through releases using exponential regressions. The change of the
ratio between the number of dependencies and the number of conflicts
through releases was tested using a linear regression. The fits of the cumu-
lative degree distributions for dependencies and conflicts that are shown
are those with the highest F-test statistic between the two applied functions
(exponential and power law) using multiplicative bins (see SI Appendix,
Fig. S1). The increase of the fraction of dependencies and conflicts within
modules through releases was tested using linear regressions. We used linear
and exponential regressions to test the change in the Z score (obtained
for allowing the comparison of the modularity across networks) through
releases. Linear regressions were also used to characterize the relationship
between the number of modules and the number of packages with depen-
dencies through releases. Finally, the decrease in the number of packages
installed by a random process through releases and its relationship with
the Z score of the modularity were tested using linear regressions.

Modularity Analysis. We have used a heuristic method, based on modularity
optimization (21), to extract the modular structure of the network of depen-
dencies of software packages constituting the different releases of the
Debian GNU/Linux operating system. The “Louvain” method (22) is a greedy
algorithm implemented in C++ that allows one to study very large networks.
The excellent results in terms of modularity optimization, given by the well-
known “Netcarto” software based on simulated annealing (23, 24), is limited
when dealing with large networks, where extracting modularity optimiza-
tion is a computationally hard problem. It has been shown that the Louvain
method outperforms Netcarto in terms of computation time (22). In addition,
the Louvain method is able to reveal the potential hierarchical structure
of the network, thereby giving access to different resolutions of community
detection (25). The statistical significance of the modularity was calculated
by performing, for each release, 1,000 randomizations of the network of
dependencies, keeping exactly the same number of dependencies per pack-
age, but reshuffling them randomly using a local rewiring algorithm (26). The
p value was calculated as the fraction of random networks with a modularity
value equal to or higher than the value obtained for the compiled network.
In order to rule out the differences (in terms of connectance, number of
packages, etc.) in the comparison of the modularity across networks, we
calculated a Z score defined as the modularity of the compiled network
of dependencies minus the mean modularity of the randomizations, divided
by the standard deviation of the randomizations.

Local Installation Process. The aim of the local installation process is to calcu-
late the distribution of the maximum number of packages that can be cor-
rectly installed in a computer by a random process of software installation.
We have performed 1,000 replicates of the local installation process for each
release of the Debian/GNU Linux operating system, ensuring that the asymp-
totic behavior of the variance was reached. Only packages with interactions
(dependencies and/or conflicts) have been used in the process, and no subset
of basic packages has previously been installed (both conditions differ from
the algorithm applied by Fortuna and Melián, ref. 27). The algorithm
randomly selects a package and checks whether it, or the packages it depends
on, have a conflict with those that have already been installed. If the package
has a conflict with an already installed one, it is discarded. If it has no conflict
with installed packages, the algorithm checks whether any of the packages
it depends on directly or indirectly (by successive dependencies) has been
discarded or has a conflict with an already installed package. In that case,
it is discarded too. Otherwise, it is installed with all the packages it
depends on, directly as well as indirectly. The process continues until no more
packages are available to be installed. In the few cases where a package
depends on two packages having a reciprocal conflict (because one or the
other is needed for the installation of the selected package), we choose ran-
domly one of them and discard the other. The randomization of the network
of dependencies used for testing the effect of the modularity on the local
installation process was the same describe above (Modularity Analysis).

4 of 5 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1115960108 Fortuna et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115960108/-/DCSupplemental/Appendix.pdf

The number of conflicts between packages and the identity of who has a
conflict with whom have remained unchanged, as in the compiled networks.
We performed 1,000 replicates of the installation process for each randomi-
zation, and generated 100 random networks of dependencies for each
release. The fraction of random networks in which the fraction of packages
installed was equal to or higher than the value obtained for the modular
network was used as the p value. A Z score was calculated for comparing,
across releases, the fraction of packages installed using the modular
networks with that of randomizations. The Z score was defined as the
mean fraction of packages installed using the modular network minus the

mean fraction of packages installed using the randomizations, divided by
the standard deviation of the randomizations.

ACKNOWLEDGMENTS. We thank Colin Twomey for useful discussions, and
Nicholas Pippenger and Luís A. Nunes Amaral for their comments and
suggestions, which have largely improved the manuscript. This work was
funded by a Marie Curie International Outgoing Fellowship within the
Seventh European Community Framework Programme (M.A.F.), and the
Defense Advanced Research Projects Agency under Grant HR0011-09-1-055
(to S.A.L.).

1. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276.
2. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature

393:440–442.
3. Barabási A-L, Albert R (1999) Emerging of scaling in random networks. Science

286:509–512.
4. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale organiza-

tion of metabolic networks. Nature 407:651–654.
5. Liljeros F, Edling CR, Amaral LAN, Stanley HE, Aberg Y (2001) The web of human sexual

contacts. Nature 411:907–908.
6. NewmanMEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad

Sci USA 98:404–409.
7. Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks.

Nature 406:378–382.
8. Solé RV, Montoya JM (2001) Complexity and fragility in ecological networks. Proc Biol

Sci 268:2039–2045.
9. Kumar R, Novak J, Raghavan P, Tomkins A (2005) On the bursty evolution of blogspace.

World Wide Web 8:159–178.
10. Aizen J, Huttenlocher D, Kleinberg J, Novak A (2004) Traffic-based feedback on the

web. Proc Natl Acad Sci USA 101:5254–5260.
11. Guimerá R, Uzzi B, Spiro J, Amaral LAN (2005) Team assembly mechanisms determine

collaboration network structure and team performance. Science 308:697–702.
12. Huberman BA, Adamic LA (1999) Growth dynamics of the World-Wide Web. Nature

401:131.
13. Albert R, Albert I, Nakarado G (2004) Structural vulnerability of the North American

power grid. Phys Rev E Stat Nonlin Soft Matter Phys 69:1–4.
14. Montoya JM, Pimm SL, Solé RV (2006) Ecological networks and their fragility. Nature

442:259–264.

15. Yan K-K, Fang G, Bhardwaj N, Alexander RP, Gerstein M (2010) Comparing genomes
to computer operating systems in terms of the topology and evolution of their
regulatory control networks. Proc Natl Acad Sci USA 107:9186–9191.

16. Myers C (2003) Software systems as complex networks: Structure, function, and
evolvability of software collaboration graphs. Phys Rev E Stat Nonlin Soft Matter Phys
68:1–15.

17. Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106:467–482.
18. Levin SA (1999) Fragile Dominion: Complexity and the Commons (Perseus, Read-

ing, MA).
19. Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persis-

tence. Proc Natl Acad Sci USA 108:3648–3652.
20. Alon U (2003) Biological networks: The tinkerer as an engineer. Science

301:1866–1867.
21. Newman MEJ (2004) Fast algorithm for detecting community structure in networks.

Phys Rev E Stat Nonlin Soft Matter Phys 69:066133.
22. Blondel V, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities

in large networks. J Stat Mech Theor Exp P10008.
23. Guimerá R, Amaral LAN (2005) Cartography of complex networks: Modules and

universal roles. J Stat Mech Theor Exp P02001.
24. Guimerá R, Amaral LAN (2005) Functional cartography of complex metabolic

networks. Nature 433:895–900.
25. Fortunato S, Barthélemy M (2007) Resolution limit in community detection. Proc Natl

Acad Sci USA 104:36–41.
26. Gale D (1957) A theorem of flows in networks. Pacific J Math 7:1073–1082.
27. Fortuna MA, Melián CJ (2007) Do scale-free regulatory networks allow more expres-

sion than random ones? J Theor Biol 247:331–336.

Fortuna et al. PNAS Early Edition ∣ 5 of 5

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

The Evolution of a Modular Software Network

Miguel A. Fortuna∗, Juan A. Bonachela, and Simon A. Levin

Department of Ecology and Evolutionary Biology
Princeton University, 08544 Princeton, New Jersey, USA

SUPPLEMENTARY INFORMATION

The Debian project was born in 1993. Since then, eleven stable versions have been

released to date, all of them named after a character in the movie Toy Story (Buzz (1996),

Rex (1996), Bo (1997), Hamm (1998), Slink (1999), Potato (2000), Woody (2002), Sarge

(2005), Etch (2007), Lenny (2009), and Squeeze (2011)). In this study we have compiled

the binary i386 packages, along with their dependencies and conflicts of the first ten re-

leases (from Buzz to Lenny). They were downloaded from http://archive.debian.org/debian/dists/.

The files (in txt format) are available from the website of this journal as a zip folder.

∗To whom correspondence should be addressed. E-mail: fortuna@ebd.csic.es, Phone: +34 954 621
125

1

T
a
b
le

I.

D
e
sc
ri
p
ti
o
n

o
f
th

e
c
o
m
p
o
n
e
n
ts

o
f
th

e
in
te
ra

c
ti
o
n

n
e
tw

o
rk

o
f
D
e
b
ia
n

G
N
U
/
L
in
u
x
o
v
e
r
ti
m
e

(r
el
ea
se
,
re
le
as
e
n
am

e,
re
le
as
e
d
at
e,

n
u
m
b
er

of
p
ac
ka
ge
s,

n
u
m
b
er

of
p
ac
ka
ge
s
w
it
h
in
te
ra
ct
io
n
s,

n
u
m
b
er

of
d
ep

en
d
en

ci
es
,
n
u
m
b
er

of
co
n
fl
ic
ts
,

n
u
m
b
er

of
p
ac
ka
ge
s
w
it
h
ou

tg
oi
n
g
d
ep

en
d
en

ci
es
,
n
u
m
b
er

of
p
ac
ka
ge
s
w
it
h
ou

tg
oi
n
g
co
n
fl
ic
ts
,
n
u
m
b
er

of
p
ac
ka
ge
s
w
it
h
in
co
m
in
g
d
ep

en
d
en

ci
es
,
an

d
n
u
m
b
er

of
p
ac
ka
ge
s
w
it
h
in
co
m
in
g
co
n
fl
ic
ts
)

R
e
le
a
s
e

C
o
d
e
n
a
m
e

Y
e
a
r

P
a
c
k
a
g
e
s

In
t
e
r
P
a
c
k

D
e
p
e
n
d
e
n
c
ie
s

C
o
n
fl
ic
t
s

P
a
c
k

k
d
e
p

o
u
t

P
a
c
k

k
c
o
n

o
u
t

P
a
c
k

k
d
e
p

in
P
a
c
k

k
c
o
n

in

1.
1

B
u
zz

19
96

48
8

37
9

53
9

28
35
1

27
91

22

1.
2

R
ex

19
96

73
8

63
3

94
3

29
59
6

26
13
8

23

1.
3

B
o

19
97

11
26

98
4

17
44

62
93
6

56
21
2

53

2.
0

H
am

m
19
98

18
52

16
77

36
31

19
9

16
03

16
6

39
8

14
0

2.
1

S
li
n
k

19
99

26
64

23
95

59
83

33
6

22
93

25
7

59
1

23
7

2.
2

P
ot
at
o

20
00

43
05

38
51

10
61
7

63
2

36
31

45
6

13
10

41
3

3.
0

W
o
o
d
y

20
02

87
47

80
40

28
22
5

16
87

77
71

11
00

27
82

10
62

3.
1

S
ar
ge

20
05

15
65
8

14
65
7

66
12
5

31
48

14
06
5

20
34

59
17

17
83

4.
0

E
tc
h

20
07

23
15
9

18
63
2

90
21
3

45
30

16
71
4

27
63

74
85

29
46

5.
0

L
en

n
y

20
09

28
24
5

22
91
9

10
15
21

47
55

20
76
8

30
11

94
95

32
73

2

10
0

10
1

10
2

k
10

-3

10
-2

10
-1

10
0

P(
k)

10
0

10
1

10
2

k
10

-3

10
-2

10
-1

10
0

P(
k)

10
0

10
1

10
2

k
10

-3

10
-2

10
-1

10
0

P(
k)

10
0

10
1

10
2

10
3

k
10

-4

10
-3

10
-2

10
-1

10
0

P(
k)

10
0

10
1

10
2

10
3

k
10

-3

10
-2

10
-1

10
0

P(
k)

10
0

10
1

10
2

10
3

k
10

-4

10
-3

10
-2

10
-1

10
0

P(
k)

10
0

10
1

10
2

10
3

k
10

-4

10
-3

10
-2

10
-1

10
0

P(
k)

10
0

10
1

10
2

10
3

k

10
-4

10
-2

10
0

P(
k)

10
0

10
1

10
2

10
3

10
4

k
10

-4

10
-3

10
-2

10
-1

10
0

P(
k)

10
0

10
1

10
2

10
3

10
4

k
10

-4

10
-3

10
-2

10
-1

10
0

P(
k)

Buzz
(91,351)

Rex

Bo

Hamm

Slink

Potato

Woody

Sarge

Etch

Lenny

(138,596)

(212,936)

(398,1603)

(591,2293)

(1310,3631)

(2782,7771)

(5917,14065)

(7485,16714)

(9495,20768)

Figure 1: Cummulative degree distribution of the number of incoming (solid lines) and outgoing
(dashed lines) dependencies for the software packages of the first ten releases of the Debian
GNU/Linux operating system (from top to bottom and from left to right). The figures depict
the probability, P(k), for a package to depend on or to be needed by at least, 1, 2, 3, ..., k
packages to work. Both axes are in logarithmic scale. In every release the best fit for the
outgoing dependencies is an exponential function while for the incoming dependencies is a power-
law. Inset, the number of packages with incoming or outgoing dependences (in parenthesis,
respectively) and the name of the release are indicated.

3

0 0.1 0.2 0.3 0.4
0

5

10

15

0 0.05 0.1 0.15 0.2 0.25
0
5

10
15
20

0 0.1 0.2 0.3 0.4
0

5

10

15

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

0 0.1 0.2 0.3 0.4
0

5

10

15

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40

0 0.1 0.2 0.3 0.4
0

5

10

15

0 0.05 0.1 0.15 0.2 0.25
0

15
30
45
60

0 0.1 0.2 0.3 0.4
0

5

10

15

0 0.05 0.1 0.15 0.2 0.25
0

15
30
45
60
75

N
um

be
r

of
 M

od
ul

es

Size (fraction of packages)

Buzz (376)

Rex (631)

Bo (980)

Hamm (1659)

Slink (2365)

Potato (3812)

Woody (7973)

Sarge (14491)

Etch (17520)

Lenny (21747)

Figure 2: Distribution of the size of the modules identified by the modularity algorithm for each
release of the Debian GNU/Linux operating system (release name and total number of interacting
packages inside each plot). The first five releases (on the left) consist of approximately the same
number of modules (between 23 and 30). In the successive releases (on the right) the number
of modules increased over time (until 94 for the most recent version). However, the size of
most modules was smaller over time in relation to the total number of interdependent packages
constituting each release. The number of modules consisting of at least 5% of the total number
of interdependent packages oscillated between 6 and 8 for all releases.

4

Figure 3: Schematic representation of the fate of the modules of interdependent packages along
the first ten releases of the Debian GNU/Linux operating system. Nodes along each column
represent the five largest modules of each release, and their size is proportional to the number
of packages constituting each release. The thickness of the line between two nodes indicates the
fraction of packages from one module in one release that are assigned to another module in the
next release (from left to right). Most nodes only have one thick line in each direction, meaning
that the packages constituting the largest modules do not tend to break up themselves in several
modules in the next release, but to keep together as one component of the new module.

5

Figure 4: Evolution of the modularity in a software network. The modular structure of the first
ten releases of the Debian GNU/Linux operating system are represented (from top to bottom
and from left to right). Nodes in each plot depict modules and links indicate the fraction of
dependencies (in green) and conflicts (in red) between packages assigned to different modules (or
within modules, loops). The size of the nodes is proportional to the logarithm of the number of
packages. The number of modules and the fraction of conflicts within modules increased over
time while the fraction of dependencies within modules remained constant. (Note that red color
can hide green color in the loops).

6

Stem cell-derived neurons
functionally integrate in
living mice

Neurons derived from stem cells hold
great promise for the treatment of
neurological diseases, but therapeu-
tic success hinges on the ability of
transplanted neurons to
integrate into existing
circuitry in vivo. Previous
studies suggest that, after
transplantation into living
animals, human stem
cell-derived neurons can
receive neuronal signals
and ameliorate signs of
neurodegeneration. But
whether the human cells
completely integrate
with—and regulate—established
neuronal networks in other animals re-
mains unclear. Jason Weick et al. (pp.
20189–20194) investigated the ability

of transplanted neurons to integrate
in vitro and in the mouse brain using
transgenic human embryonic stem cell
(hESC)-derived neurons engineered
to be specifically activated by light.
The authors grew the cells in culture
with mouse neurons that displayed a
synchronized network activity known

as “bursting”, and found
that the hESC-derived
neurons progressively
developed bursting be-
havior by functionally in-
tegrating with the mouse
cell network. Further-
more, human neurons
triggered bursting behav-
ior in the mouse cell net-
work upon stimulation
with light. Light stimula-

tion also elicited responses in existing
mouse neurons from the brain slices of
mice transplanted with hESC-derived
neurons. These findings suggested to

the authors that transplanted human
neurons can participate in and modu-
late neural network activity in other
animals through functional integration.
According to the authors, the findings
may prove useful for the treatment of
Parkinson and Alzheimer’s diseases,
stroke, and epilepsy. — N.Z.

Electric fields at the surface
of tiny particles

Surface plasmons are electron oscil-
lations at the surface of a material
that create large local electric fields.
Researchers recently found that
surface plasmons in tiny metal par-
ticles can couple together and move in
step, amplifiying the electric field, but
resistance from the metal can dampen
the oscillations. Wei-Shun Chang et
al. (pp. 19879–19884) expanded on
theoretical studies of coupled surface
plasmons in metal particles by explor-

December 13, 2011  u  vol. 108  u  no. 50  u  19837–20272

Proceedings of the National Academy of Sciences of the United States of America www.pnas.org
PNASIn This Issue

PNAS  u  December 13, 2011  u  vol. 108  u  no. 50  u  19837–19838www.pnas.org/cgi/doi/10.1073/iti5011108

Plasmodium vivax, a major
cause of human malaria,
invades red blood cells pri-
marily by binding to a cell
surface receptor known as
Duffy blood-group anti-
gen (Fy). Christopher King
et al. (pp. 20113–20118)
found that binding to Fy
by a parasite invasion pro-
tein known as P. vivax Duffy
binding protein (PvDBP)
decreased by 41–50% in
red blood cells that ex-
pressed Fya, an allele that is
distinguished from Fyb by a single point mutation. The authors found that antibodies to PvDBP were better able to block
binding of the PvDBP to the surfaces of Fya cells compared with Fyb cells. Upon examining clinical P. vivax infections in
an endemic region of the Brazilian Amazon, the authors found that the Fya allele, which dominates in many Asian and
American populations where vivax malaria is most highly endemic, was associated with a decreased susceptibility to vivax
malaria, while increased susceptibility to vivax malaria was associated with increased expression of Fyb. The findings
indicate that Fya may have been positively selected to improve human fitness to vivax malaria, and that the efficacy of a
PvDBP-based vaccine may differ among populations with different Fy phenotypes, according to the authors. — S.R.

Red blood cell receptor affects vivax malaria susceptibility

Global frequencies of the FY alleles.

Transplanted hESC-derived
neurons (green) integrate
with host neurons (red) in

the mouse brain.

ing whether the electromagnetic field
enhancement of closely spaced gold
particles was greater than the loss due
to increased resistance. The authors
measured absorption and scattering
of surface plasmons in rings of gold

particles
and found
lower
absorption
and higher
scattering
efficiencies
for coupled
plasmons
compared
to surface
plasmons
of isolated

particles. Because the results indicate
that coupled surface plasmons in par-
ticle strings suffer smaller resistance
losses compared with noninteracting
collections of individual particles, the
authors suggest that closely spaced
metal particles could be used as
amplifiers and antennas for functions
including light-guides and biological
sensors. — J.M.

Linux growth provides model
for biological evolution

Modular software systems evolve into
increasingly complex networks of
interdependent subsystems. To meet
their users’ needs, computer operat-
ing systems must adapt to changing
hardware environments while mini-
mizing costs, in a manner that evokes
biological evolution. Miguel Fortuna
et al. (pp. 19985–19989) examined
the changing modular network of
dependencies that evolved during the
first 10 releases of the Debian GNU/
Linux operating system and identified
analogies between it and ecological
webs of interacting species. According
to the authors, Debian GNU/Linux
has become increasingly modular as
it has grown, which minimizes the
risk of system-wide collapse due the
failure of individual software pack-
ages. Furthermore, with each succes-
sive release the newly added software
packages predominantly exploited

preexisting, widely used subsystems,
which has allowed Debian GNU/
Linux to expand exponentially while
decreasing conflicts between packages.
This functional expansion via software
creation and deprecation, the authors
suggest, mirrors macroevolution in
which speciation and extinction fine-
tune increasingly complex biological
networks. The findings demonstrate
that further research into network evo-
lution and self-assembly in engineered
systems can provide opportunities for
biologists and computer scientists to
collaborate and study fundamental
problems in biology, according to the
authors. — T.J.

Human artificial
chromosomes for
gene therapy

Small, engineered human artificial
chromosomes (HACs) can act as new
chromosomes in human cells. Unlike
the viral vectors used in gene therapy,
HACs avoid uncontrolled gene copy
number and accidental gene muta-
tion and silencing. Jung-Hyun Kim et
al. (pp. 20048–20053) combined two
recent HAC advances to “repair” hu-
man cells derived from patients with
deficiencies in one of two cancer-asso-
ciated genes. The researchers isolated
the cancer-associated genes directly
from the patients’ genomic DNA,
engineered a HAC carrying the genes,
transferred
the HAC into
human cells,
and observed
that the
inserted genes
expressed pro-
teins normally
and comple-
mented defi-
ciencies in the
patients’ defective cells. In additional
tests, the researchers were able to inac-
tivate the HAC in the cell population,
suggesting the method can be used to
generate a control population of cells
for researchers studying the effects of
HAC-mediated cell therapies. Because
HACs provide stable, reversible de-

livery of full-length genes into human
cells, techniques based on HAC may
be suitable for gene function studies
and clinical gene therapy in the future,
according to the authors. — J.M.

Restriction enzyme–DNA
interaction explored in
real time

Most techniques to explore interac-
tions between restriction enzymes
and nucleic acids rely on the use of
chemical labels, which can hinder an
unobstructed view of the dynamics of
enzyme reactions. Kenneth
Eisenthal et al. (pp. 19979–19984)

used a technique called time-resolved
second harmonic spectroscopy to
explore the reaction between EcoR1,
a restriction enzyme commonly used
in genetic engineering, and a 90 bp
duplex of DNA attached to polysty-
rene carboxylate particles. Because
the technique is sensitive to changes
in the structure and electrical charge
of molecules engaged in biological
reactions, the authors could chart the
progress of the reaction as a function
of the second harmonic signal in real
time. The binding of the enzyme to
its recognition sequence in the DNA,
the authors report, led to a change in
the shape of the DNA—from rod-like
to a bent conformation. The shape
change triggered a spike in the second
harmonic signal, which gradually
dropped over hundreds of seconds,
tracking the cleavage of the DNA, its
dissociation from the enzyme, and its
diffusion into the solution save a 16 bp
fragment attached to the particle. The
drop in the signal varied with the con-
centration of magnesium ions, which
are crucial to the enzyme’s function.
According to the authors, the find-
ings demonstrate the power of second
harmonic spectroscopy to deconstruct
biological reactions in real time with
high sensitivity. — P.N.

19838  u  www.pnas.org/cgi/doi/10.1073/iti5011108

Human artificial
chromosome (red)

carrying cancer-
associated gene NBS1.

Restriction enzyme–DNA interaction
explored.

Ohmic heating and
electric field distribution
near gold nanoparticles
in 1D self-assemblies.

