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Abstract: ‘‘It is hard to realize that the living world as we
know it is just one among many possibilities’’ [1]. Evolving
digital ecological networks are webs of interacting, self-
replicating, and evolving computer programs (i.e., digital
organisms) that experience the same major ecological
interactions as biological organisms (e.g., competition,
predation, parasitism, and mutualism). Despite being
computational, these programs evolve quickly in an
open-ended way, and starting from only one or two
ancestral organisms, the formation of ecological networks
can be observed in real-time by tracking interactions
between the constantly evolving organism phenotypes.
These phenotypes may be defined by combinations of
logical computations (hereafter tasks) that digital organ-
isms perform and by expressed behaviors that have
evolved. The types and outcomes of interactions between
phenotypes are determined by task overlap for logic-
defined phenotypes and by responses to encounters in
the case of behavioral phenotypes. Biologists use these
evolving networks to study active and fundamental topics
within evolutionary ecology (e.g., the extent to which the
architecture of multispecies networks shape coevolution-
ary outcomes, and the processes involved).

This is a ‘‘Topic Page’’ article for PLOS Computational Biology.

Overview

‘‘So far, we have been able to study only one evolving system […] If we

want to discover generalizations about evolving systems, we will have to look at

artificial ones’’ [2].

In nature, species do not evolve in isolation but in large

networks of interacting species (see Figure 1). One of the main

goals in evolutionary ecology is to disentangle the evolutionary

mechanisms that shape and are shaped by patterns of interaction

between species [3–5]. A particularly important question concerns

how coevolution, the reciprocal evolutionary change in local

populations of interacting species driven by natural selection [6], is

shaped by the architecture of food webs, plant–animal mutualistic

networks, and host–parasite communities. The concept of diffuse

coevolution, where adaptation is in response to a suite of biotic

interactions [7], was the first step towards a framework unifying

relevant theories in community ecology and coevolution. Under-

standing how individual interactions within networks influence

coevolution, and conversely how coevolution influences the overall

structure of networks, requires an appreciation for how pairwise

interactions change due to their broader community contexts as

well as how this community context shapes selective pressures

[8,9]. Accordingly, research is now focusing on how reciprocal

selection influences and is embedded within the structure of

multispecies interactive webs, not only on particular species in

isolation [4].

Coevolution in a community context can be addressed

theoretically via mathematical modeling and simulation [10,11],

by looking at ancient footprints of evolutionary history via

ecological patterns that persist and are observable today [12,13],

and by performing laboratory experiments with microorganisms

[14]. In spite of the long time scales involved and the substantial

effort that is necessary to isolate and quantify samples, the latter

approach of testing biological evolution in the lab has been

successful over the last two decades [15]. However, studying the

evolution of interspecific interactions, which involves dealing with

more complex webs of multiple interacting species, has proven to

be a much more difficult challenge. A meta-analysis of host–phage

interaction networks, carried out by Weitz and his team [16],

found a striking statistical structure to the patterns of infection and

resistance across a wide variety of environments and methods from

which the hosts and phage were obtained. However, the ecological

mechanisms and evolutionary processes responsible have yet to be

unraveled.

Digital ecological networks enable the direct, comprehensive,

and real time observation of evolving ecological interactions

between antagonistic and/or mutualistic digital organisms that are

difficult to study in nature. Research using self-replicating

computer programs can help us understand how coevolution

shapes the emergence and diversification of coevolving species

interaction networks and, in turn, how changes in the overall

structure of the web (e.g., through extinction of taxa or the

introduction of invasive species) affect the evolution of a given

species. Studying the evolution of species interaction networks in

these artificial evolving systems also contributes to the develop-

ment of the field, while overcoming limitations evolutionary

biologists may face. For example, laboratory studies have shown

that historical contingency can enable or impede the outcome of

the interactions between bacteria and phage, depending on the
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order in which mutations occur: the phage often, but not always,

evolves the ability to infect a novel host [17]. Therefore, in order

to obtain statistical power for predicting such outcomes of the

coevolutionary process, experiments require a high level of

replication. This stochastic nature of the evolutionary process

was exemplified by Stephen Jay Gould’s inquiry (‘‘What would

happen if the tape of the history of life were rewound and

replayed?’’) [18]. Because of their ease in scalability and

replication, evolving digital ecological networks open the door to

experiments that incorporate this approach of replaying the tape of

life. Such experiments allow researchers to quantify the role of

historical contingency and repeatability in network evolution,

enabling predictions about the architecture and dynamics of large

networks of interacting species.

The inclusion of ecological interactions in digital systems

enables new research avenues: investigations using self-replicating

computer programs complement laboratory efforts by broadening

the breadth of viable experiments focused on the emergence and

diversification of coevolving interactions in complex communities.

This cross-disciplinary research program provides fertile grounds

for new collaborations between computer scientists and evolution-

ary biologists.

History

Coreworld
The field of digital life was inspired by the rampant computer

viruses of the 1980s. These viruses were self-replicating computer

programs that spread from one computer to another, but they did

not evolve. Steen Rasmussen was the first to include the possibility

of mutation in self-replicating computer programs by extending

the once-popular Core War game, where programs competed in a

digital battle ground for the computer’s resources [19]. Although

Rasmussen observed some interesting evolution, mutations in this

early genetic programing language produced many unstable

organisms, thus prohibiting scientific experiments. Just one year

later, Thomas S. Ray developed an alternative system, Tierra, and

performed the first successful experiments with evolving popula-

tions of self-replicating computer programs [20].

Tierra
Thomas S. Ray created a genetic language similar to earlier

digital systems, but added several key features that made it more

suitable for evolution in his artificial life system, Tierra. Primarily,

he prevented instructions from writing beyond the privately

allocated memory space, thus limiting the potential for organisms

writing over others [20]. The only selective pressure in Tierra was

for rapid self-replication. Over the course of evolution, this

pressure lead to shorter and shorter genomes, reducing the time

spent copying instructions during replication. Some individuals

even started executing the replication code in other organisms,

allowing those ‘‘cheaters’’, which were originally referred to as

parasites in Ray’s work, to further shrink their genetic programs.

This form of cheating was the first evolved ecological interaction

between organisms in artificial life software. Ray’s cheaters pre-

dated the formal study of evolving ecological interactions using

Tierra-like digital evolution platforms by 20 years.

Avida
In 1993, Christoph Adami, Charles Ofria, and C. Titus Brown

created the artificial life platform Avida [21] (available at http://

avida.devosoft.org/download/) at the California Institute of

Technology. They added the ability for digital organisms to

obtain bonus CPU cycles for performing computational tasks, like

adding two numbers together. In Avida, researchers can define the

available tasks and set the consequences for organisms upon

successful calculation [21]. When organisms are rewarded with

additional CPU cycles, their replication rate increases. Since Avida

was designed specifically as a scientific tool, it allows users to

Figure 1. Pairwise coevolution. When Darwin received an orchid (Angraecum sesquipedale) from Madagascar whose nectary was one and a half
feet long, he surmised that there must be a pollinator moth with a proboscis long enough to reach the nectar at the end of the spur [32]. In its
attempt to get the nectar, the moth would have pollen rubbed onto its head, and the next orchid visited would then be pollinated. In 1903, such a
moth was discovered: Xanthopan morgani. This was a remarkable example of an evolutionary prediction. However, because species coevolve within
large networks of multispecies ecological interactions, this example of pairwise coevolution is more the exception than the rule.
doi:10.1371/journal.pcbi.1002928.g001
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collect a comprehensive suite of data about evolving populations.

Due to its flexibility and data tracking abilities, Avida has become

the most widely used digital system for studying evolution. The

Devolab (http://devolab.msu.edu/) at the BEACON Center

currently continues development of Avida.

Implementation

Digital Organisms
Digital organisms in Avida are self-replicating computer

programs with a genome composed of assembly-like instructions.

The genetic programing language in Avida contains instructions

for manipulating values in registers and stacks as well as for control

flow and mathematical operations. Each digital organism contains

virtual hardware on which its genome is executed. To reproduce,

digital organisms must copy their genome instruction by

instruction (see Figure 2) into a new region of memory through

a potentially noisy channel that may lead to errors (i.e., mutations).

While most mutations are detrimental, mutants will occasionally

have higher fitness than their parents, thereby providing the basis

for natural selection with all of the necessary components for

Darwinian evolution. Digital organisms can acquire random

binary numbers from the environment and are able to manipulate

them using their genetic instructions, including the logic

instruction NAND. With only this instruction, digital organisms

can compute any other task by stringing together various

operations because NAND is a universal logic function [22]. If

the output of processing random numbers from the environment

corresponds to the result of a particular logic task, then that task is

incorporated into the set of tasks the organism performs, which, in

turn, defines part of its phenotype.

Digital Interactions
Interactions between digital organisms occur through

phenotypic matching, which, in the case of task-based

phenotypes, results from the performance of overlapping logic

functions (see Figure 3). Different mechanisms for mapping

phenotypic matching to interactions can be implemented,

depending on the antagonistic or mutualistic nature of the

interaction.

Host–parasite interactions. In host–parasite interactions,

the parasite organisms benefits at the expense of the host

organisms. Parasites in Avida are implemented just like other

self-replicating digital organisms, but they live inside hosts and

execute parasitic threads using CPU cycles stolen from their hosts

[23]. Because parasites impose a cost (lost CPU cycles) on hosts,

there is selection for resistance, and when resistance starts to

spread in a population, there is selective pressure for parasites to

infect those new resistant hosts. Infection occurs when both the

parasite and host perform at least one overlapping task. Thus a

host is resistant to a particular parasite if they do not share any

tasks (see Figure 3). This mechanism of infection mimics the

inverse-gene-for-gene model [24], in which infection only occurs if

a host susceptibility gene (the presence of a logic task) is matched

by a parasite virulence gene (a parasite performing the same task).

Additional infection mechanisms, such as the matching allele and

gene-for-gene models [25], can also be implemented.

In traditional infection genetic models, host resistance and

pathogen infectivity have associated costs. These costs are an

important part of theory about why defense genes do not always

fix rapidly within populations [26]. Costs are also present in digital

host–parasite interactions: performing more or more complex

tasks implies larger genomes and hence slower reproduction. Tasks

may also allow organisms access to resources present in the abiotic

environment, and the environment can be carefully manipulated

to control the relative costs or benefits of resistance.

By keeping track of task-based phenotypes as well as tracking

information about successful infections in the community,

researchers are able to perfectly reconstruct the interaction

networks of digital coevolving hosts and parasites (see Figure 4).

The structure of these networks is a result of the interplay between

ecological processes, mainly host abundance, and coevolutionary

dynamics, which lead to changes in host specificity. [27]

Mutualistic interactions. Interactions in which both spe-

cies obtain mutual benefit, such as those between flowering plants

and pollinators, and birds and fleshy fruits, can be implemented

Figure 2. Self-replication of a digital organism. The circular genome of a digital organism, on the left, consists of a set of instructions
(represented here as letters). Some of these instructions are involved in the copy process and others in completing computational tasks. The
experimenter determines the probability of mutations. Copy mutations occur when an instruction is copied incorrectly, and is instead replaced by a
random instruction in the forming offspring’s genome (as can be seen in the offspring, on the right). Other types of mutations, such as insertions and
deletions are also implemented. All three of the parent’s hardware pointers are represented: the instruction pointer (indicated by an i), the write-head
pointer (indicated by a w), and the flow pointer (indicated by an f). Arcs inside the circular genome represent the execution flow, showing most of the
CPU cycles being used during the copying process. After genome replication is complete, the parent organism divides off its offspring, which must
now fend for itself within the Avida world. The last snapshot of an animation representing the self-replication process of a digital organism, Video S1,
is shown. It was generated using Avida-ED, which is available under the terms of the GNU Lesser General Public License at http://avida-ed.msu.edu/.
doi:10.1371/journal.pcbi.1002928.g002
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in evolving digital experiments by following the same task

matching approach used for host–parasite interactions, but using

free-living organisms instead of parasitic threads. For example,

one way to set up a plant-pollinator type of interaction is to use

an environment containing two mutually exclusive resources: one

designated for ‘‘plant’’ organisms and one for ‘‘pollinator’’

organisms. Similar to parasites attempting infection, if tasks

overlap between a pollinator and a plant it visits, pollination is

successful and both organisms obtain extra CPU cycles. Thus,

these digital organisms obtain mutual benefit when they perform

at least one common task, and more common tasks lead to larger

mutual benefits. While this is one specific way to enable

mutualistic interactions, many others are possible in Avida.

Interactions that begin as parasitic may even evolve to be

mutualistic under the right conditions. In most cases, coevolution

will result in concurrent interactions between multiple pheno-

types. Thus, observed networks of mutualistic interactions can

inform our understanding about the outcomes and processes of

coevolution in complex communities [28].

Predator–prey interactions. While host–parasite and

mutualistic interactions are determined by task-based phenotypes,

predator–prey interactions are determined by behavior. Predators

are digital organisms that have evolved from ancestral prey

phenotypes to locate, attack, and consume organisms. When a

predator executes an attack instruction (acquired through

mutation), it kills a neighboring organism. When predators kill

prey, they gain resources required for reproduction (e.g., CPU

cycles) proportional to the level accumulated by the consumed

prey. Selection favors behavioral strategies in prey that enable

them to avoid being eaten. At the same time, selection favors

predators with behavioral strategies that improve their food

finding and prey attacking abilities. The resulting diversity in the

continuously evolving behavioral phenotypes creates dynamic

predator–prey interaction networks in which selective forces are

constantly changing as a consequence of the emergence of new,

and loss of old, behaviors. Because predators and prey move

around in and use information about their environment, these

experiments are typically carried out using spatially structured

Figure 3. Logical computations, i.e., tasks, partially define phenotypes, and phenotypic matching leads to ecological interactions.
Digital organisms process binary numbers taken from the environment using the instructions that constitute their genomes. When the output of
processing those numbers equals the result of applying a logic function, the digital organism is said to have performed that task. The combination of
tasks performed by a digital organism partially defines its phenotype. The center of the figure depicts the output of applying eight logical operators
(tasks) on the two input numbers above. On the left and right, five hypothetical host (green) and parasite (red) phenotypes are represented as
columns (on the top) and as circles (below). On the top, each column depicts a phenotype and each row represents a task. Tasks performed by each
phenotype are filled. In the lower part, the interaction networks between hosts and parasites are illustrated, which result from phenotypic matching:
a parasite infects a host (indicated by a line) if it performs at least one task that is also performed by the host. Inset numbers indicate the identity of
phenotypes represented on the top. Arrows represent the temporal direction of the coevolutionary process: from the earliest phenotype to the most
recent one. The order of tasks (from top to bottom) indicates the time needed for a digital organism to perform that task over the course of the
evolutionary trajectory. Depending on the pattern of tasks performed by the digital organisms, a modular (left) or nested (right) interaction network
can emerge.
doi:10.1371/journal.pcbi.1002928.g003
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populations. On the other hand, host–parasite and mutualistic

coevolution are often done in well-mixed environments, though

the choice of the environment is at the discretion of the

experimenter.

Research Directions

Understanding how biodiversity is organized in natural

ecosystems requires going beyond the study of pairs of interacting

species. Using digital organisms, one can find generalities about

the evolutionary and ecological processes shaping the web of

interactions among species, as well as the coevolutionary processes

embedded within these networks. By tracing the evolution of

digital communities and their ecological networks, researchers

obtain perfect fossil records of how the number and patterns of

links among interacting phenotypes evolved.

The stability–diversity debate [29] is a long-standing debate

about whether more diverse ecological networks are also more

stable. Until recently, this debate has focused on one component of

biodiversity: species diversity. However, newer research has begun

dealing with another component of biodiversity: diversity in

species interactions. Mathematical models show that a mixture of

antagonistic and mutualistic interactions can stabilize population

dynamics and that the loss of one interaction type may critically

destabilize ecosystems [30]. Studies with digital organisms can

shed light on this debate from an empirical perspective because the

types of interactions included can be manipulated and the stability

of the resulting evolving digital ecological network can be

measured.

Equally addressable using evolving digital ecological networks

are many of the open questions concerning the coevolution of

ecological interactions in multispecies communities. For example,

do coevolutionary dynamics change as communities become

richer? Is there any limit to their richness? Is the evolution of

interactions between multispecies networks historically contingent

Why do some ecological scenarios lead to predictable network

structures and others do not? [31] Do genetic constraints play a

large role in the evolution of ecological networks? These are only a

few of many open questions concerning the coevolution of

ecological interactions in multispecies communities.

These and many related questions require researchers to look

across the evolutionary history of ecological network formation.

For natural systems, those data are very difficult to collect. With

digital organisms, watching both the coevolutionary process and

ecological network formation is possible in real time. Data on the

abundance of interacting phenotypes are recorded without error;

hence, the evolutionary implications of ecological processes can be

explored in-depth.

The study of self-replicating and evolving computer programs

offers a tantalizing glimpse into the evolution of interactions among

organisms that do not share any ancestry with the biochemical life of

Earth. This comes with potential caveats in translating predictions

of evolving digital networks to biological ones because mechanistic

details differ substantially between interacting digital organisms and

interacting biological organisms. Nevertheless, these digital net-

works contain the necessary components for ongoing coevolution-

ary dynamics in large webs of interacting organisms. In spite of the

differences between biological and digital evolution, the study of

evolving digital ecological networks can lead to a more predictive

understanding of natural dynamics. Because the general operational

processes (e.g., Darwinian evolution, mutualism, parasitism, etc.) do

not differ, studies utilizing digital networks can uncover rules

operating on and within ecological networks. Together with

microbial experiments, they create opportunities for furthering the

understanding of the interplay between ecological and evolutionary

processes among interacting species.

Supporting Information

Text S1 Version history of the text file.

(XML)

Text S2 Peer reviews and response to reviews. Human-readable

versions of the reviews and authors’ responses are available as

comments on this article.

(XML)

Video S1 Self-replication of a digital organism. The circular

genome of a digital organism, on the left, consists of a set of

instructions (represented here as letters). Some of these instructions

are involved in the copy process and others in completing

computational tasks. The experimenter determines the probability

Figure 4. Evolving host–parasite webs. Starting from a host phenotype (green node) and a parasite phenotype (red node), a complex network of
interactions (arrows) between hosts and parasites emerges out of the coevolutionary process. Nodes representing new host and parasite phenotypes
appear and disappear over evolutionary time. The abundance of individuals expressing each phenotype changes continuously (indicated by node
size) altering interaction patterns, and thus influencing subsequent coevolutionary dynamics. Interactions between a host phenotype and a parasite
phenotype are depicted as arrows pointing in opposite directions: the thickness of red arrows indicates the fraction of infections that a particular
parasite is responsible for inflicting on the indicated host phenotype, while the thickness of the green arrows indicates the fraction of all of the hosts
a particular parasite phenotype infects that is accounted for by the indicated host phenotype. Often asymmetry between the thicknesses of arrow-
pairs leads to red arrows dominating the picture. At these times, most parasite phenotypes are infecting only a small fraction of hosts expressing a
given phenotype. Instead, the majority of those hosts are being infected by parasites with other phenotypes. This is a single snapshot of Video S2,
which depicts the evolutionary dynamics of a host–parasite community. It was generated using Pajek, which is available under the GNU General
Public License at http://pajek.imfm.si/doku.php.
doi:10.1371/journal.pcbi.1002928.g004
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of mutations. Copy mutations occur when an instruction is copied

incorrectly, and is instead replaced by a random instruction in the

forming offspring’s genome (as can be seen in the offspring, on the

right). Other types of mutations, such as insertions and deletions,

are also implemented. Initially, all three of the parent’s hardware

pointers are in the same location, at the instruction represented

here by r. As execution begins, the instruction pointer (indicated by

an i) advances. The first few instructions allocate space for the

offspring, and then move the write-head pointer (indicated by a w)

into that space. The flow pointer (indicated by an f) is used to move

the other pointers to genetically specified locations. The remainder

of the process of self replication is carried out by a set of

instructions at the end of the genome, commonly referred to as the

copy-loop. When execution reaches the copy-loop, the flow

pointer is used to keep the flow of execution inside of a loop

that advances the read and write heads and copies instructions

from the parent genome (read-head) to the offspring genome

(write-head). Arcs inside the circular genome represent the

execution flow, showing most of the CPU cycles being used

during the copying process. After genome replication is complete,

the parent organism divides off its offspring, which must now fend

for itself within the Avida world. This animation was generated

using Avida-ED, which is available under the terms of the GNU

Lesser General Public License at http://avida-ed.msu.edu/.

(OGV)

Video S2 Evolving host–parasite webs. Starting from a host

phenotype (green node) and a parasite phenotype (red node), a

complex network of interactions (arrows) between hosts and

parasites emerges out of the coevolutionary process. Nodes

representing new host and parasite phenotypes appear and

disappear over evolutionary time. The abundance of individuals

expressing each phenotype changes continuously (indicated by

node size) altering interaction patterns, and thus influencing

subsequent coevolutionary dynamics. Interactions between a host

phenotype and a parasite phenotype are depicted as arrows

pointing in opposite directions: the thickness of red arrows

indicates the fraction of infections that a particular parasite is

responsible for inflicting on the indicated host phenotype, while

the thickness of the green arrows indicates the fraction of all of the

hosts a particular parasite phenotype infects that is accounted for

by the indicated host phenotype. Often asymmetry between the

thicknesses of arrow-pairs leads to red arrows dominating the

picture. At these times, most parasite phenotypes are infecting only

a small fraction of hosts expressing a given phenotype. Instead, the

majority of those hosts are being infected by parasites with other

phenotypes. This animation was generated using Pajek, which is

available under the GNU General Public License at http://pajek.

imfm.si/doku.php.

(OGV)
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