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Ontology for the avida digital 
evolution platform
Raúl Ortega1, Enrique Wulff2 & Miguel a. Fortuna  1 ✉

the Ontology for avida (Ontoavida) aims to develop an integrated vocabulary for the description of 
avida, the most widely used computational approach for performing experimental evolution using 
digital organisms–self-replicating computer programs that evolve within a user-defined computational 
environment. The lack of a clearly defined vocabulary makes some biologists feel reluctant to embrace 
the field of digital evolution. This integrated framework empowers biologists by equipping them with 
the necessary tools to explore and analyze the field of digital evolution more effectively. By leveraging 
the vocabulary of avida, researchers can gain deeper insights into the evolutionary processes and 
dynamics of digital organisms. In addition, Ontoavida allows researchers to make inference based 
on certain rules and constraints, facilitate the reproducibility of in silico evolution experiments and 
trace the provenance of the data stored in avidaDB–an RDF database containing the genomes, 
transcriptomes, and phenotypes of more than a million digital organisms. Ontoavida is part of the Open 
Biological and Biomedical Ontologies (OBO Foundry) and is available at http://www.obofoundry.org/
ontology/ontoavida.html.

Introduction
Since the pioneering work by Thomas S. Ray1 30 years ago, digital evolution research has established itself as a 
valuable approach in biology, bridging experimental research with computational modelling. The contribution 
of digital evolution to the development of ecology and evolutionary biology comprises diverse topics such as 
robustness and evolvability2–6, complexity1,7–10, phenotypic plasticity11,12, the role historical contingency in evo-
lution13–15, ecological interactions among species16–21, gene regulatory networks2,22,23, genomic architecture9,24–26, 
evolution of sex27, and evolution of cooperation28–30.

Avida is the most widely used software platform for research in digital evolution31. In Avida, self-replicating 
computer programs–digital organisms–evolve within a user-defined computational environment. It satisfies 
three essential requirements for evolution to occur: replication, heritable variation, and differential fitness. The 
latter arises through competition for the limited resources of memory space and central processing unit, CPU 
time. A digital organism in Avida consists of a sequence of code instructions–its genome–and a virtual CPU, 
which executes these instructions. Some of these instructions are involved in copying an organism’s genome, 
which is the only way the organism can pass its genetic material to future generations. To reproduce, a digital 
organism must copy this genome instruction by instruction into a new region of memory through a process that 
may lead to errors, i.e., mutations. A mutation occurs when an instruction is copied incorrectly, and is instead 
replaced in the offspring genome by an instruction chosen at random (with a uniform distribution) from a set 
of possible instructions. Some instructions are required for viability–replication–whereas others are required 
to complete computational operations (such as addition, multiplications, and bit-shifts), and are executed on 
binary numbers taken from the environment through input-output instructions encoded in the genome of the 
digital organism. The output of processing these numbers may equal the result of a specific Boolean logic oper-
ation, such as NOT and NAND. We call the identity of the logic operations it can perform the organism’s pheno-
type. An organism can be rewarded for performing logic operations with virtual CPU-cycles, which speeds up 
the execution of its instructions. This creates an additional selective pressure (besides reducing the number of 
instructions required for replication) which favours those organisms in an evolving population where mutations 
have produced sequences of instructions in their genomes that perform logic operations. Organisms that are 
more successful–those that replicate faster–are more likely to spread through a population.
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Digital evolution presents a highly promising avenue within the field of ecology and evolution, offering an 
intermediary level of complexity between real-life systems and traditional mathematical models. By studying 
digital organisms, researchers gain unprecedented insights into evolutionary processes that are otherwise chal-
lenging to explore using natural systems alone. Consequently, digital organisms offer a complementary approach 
to studying natural or experimental evolution. In spite of the differences in the underlying mechanisms between 
digital and biological organisms, the fundamental operational processes, such as Darwinian evolution, remain 
equivalent.

Natural language has been used to describe the meaning of the data resulting from performing evolution 
experiments using Avida. In some cases, researchers have used different terms to refer to the same entity (e.g., 
avidian and digital organism, or functional trait and logic operation) or the same term to refer to different enti-
ties (e.g., genome and genotype, or phenotype and logic operation). The lack of a clearly defined vocabulary, 
including imprecision and ambiguity, makes some biologists feel reluctant to embrace the field of digital evolu-
tion. The first step in formalizing this knowledge is to define an explicit ontology that describes unambiguously 
the entities relevant to this particular domain and the relations between them. In the field of digital evolution, 
particularly in Avida, no effort has been made yet to formalize a vocabulary beyond the documentation provided 
with the software.

Developing an ontology for Avida can provide several benefits and advantages for studying and understand-
ing digital evolution. Specifically, this standardized language can: enhance communication among researchers; 
improve our understanding of digital organisms (e.g., by defining the relationship between genotype and phe-
notype); help in formulating well-defined research questions, hypotheses, and data collection strategies; allow 
for better interoperability with other tools and platforms (e.g., aevol); be a valuable educational resource for 
those learning about digital evolution, artificial life, and evolutionary computation; provide a stable reference 
for understanding past experiments and their outcomes as the software and datasets evolve; enable effective 
data sharing and analysis within the research community (e.g., it allows researchers to compare results across 
different experiments); and finally, help identify areas for improvement and extension, supporting the continued 
growth of the software.

The Ontology for Avida (OntoAvida) is open and available to everyone and provides semantics to avidaDB–a 
database that stores genomes (i.e., circular sequences of code instructions), transcriptomes (i.e., the code 
instructions that are actually executed by the CPU of a digital organism during its replication), and phenotypes 
(i.e., logic operations computed on binary numbers taken from the environment) of more than a million digital 
organisms. The semantic relationships between the terms commonly used in Avida are expressed in the W3C 
standard ontology language OWL-DL. OntoAvida is part of the Open Biological and Biomedical Ontologies 
(OBO Foundry) and is currently developed by the Computational Biology Lab at the Doñana Biological Station, 
a research institute of the Spanish National Research Council based at Seville (Spain).

Results
classes. OntoAvida comprises 670 classes (without including imported terms). Some of the most relevant 
ones are the digital analogs of genome, transcriptome and phenotype. This set of terms includes the 512 sub-
classes corresponding to the distinct discrete phenotypes that can be computed by a digital organism (i.e., the 
whole phenotype space determined by the combination of 9 logic operations that can be computed by a digital 
organism). Next, we categorize the main classes following the three goals that have motivated the development of 
OntoAvida: inference, data provenance, and reproducibility (Fig. 1).

Inferrencing. Besides host and parasite digital organisms, 6 subclasses–organized in groups of 
disjoint classes–of the digital organism class are inferred from data:

•	 merely viable digital organism: a digital organism that does not compute any logic operation 
(i.e., it can only produce an offpring).

•	 single-trait digital organism: a digital organism that computes a single logic operation.
•	 plastic digital organism: a digital organism whose genome encodes distinct phenotypes in dif-

ferent environments.
•	 non-plastic digital organism: a digital organism whose genome encodes the same phenotype in 

all environments, respectively.
•	 transcriptome-robust digital organism: a digital organism that executes the same transcrip-

tome in all environments.
•	 transcriptome-sensitive digital organism: a digital organism that executes distinct tran-

scriptomes in different environments.

Inferrencing is performed using restrictions on the key object properties described in the next section: com-
putes, executes, and encodes (used to infer the object property has phenotype).

Provenance. Provenance is an essencial requirement for building a semantic database because it contains infor-
mation on the source from where the data stored in the database avidaDB come from. In OntoAvida, it involves 
three main classes:

•	 digital organism: a self-replicating computer program that mutates and evolves within a user-defined 
computational environment.

•	 avida experiment: an experiment carried out in Avida using digital organisms.

https://doi.org/10.1038/s41597-023-02514-3
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•	 paper as a specific class of publication: an article reporting original research, published in a peer-re-
viewed journal.

A digital organism can participate in or be formed as result of an avida experiment, depend-
ing on whether it already existed in the database or arised for the first time in a particular evolution experiment, 
respectively. In both cases, the experiment is reported and communicated to the scientific community in natural 
language mainly as a research paper, which is identified by the datatype doi (i.e., a character string used as a 
permanent identifier for a digital object, in a format controlled by the International DOI Foundation).

Reproducibility. When an evolution experiment is performed in Avida, anyone should be able to replicate the 
experiment and have access to the data.

Object properties. A core set of 10 object properties have been added in the current version (without 
including imported terms). This set includes properties on ecological relations such as host-parasite interactions. 

Fig. 1 Subset of the ontology showing inference, provenance, and reproducibility. Classes and object properties 
are represented by rectangle and diamond symbols, respectively. The name of the inferred classes and properties 
are highlighted in bold face. Red arrows link classes connected by object properties, and black lines connect 
classes with their subclasses. Subclasses of the digital organism class are inferred based on restrictions 
applied on the properties computes, executes, and has phenotype (e.g., a merely-viable 
digital organism is a digital organism that does not compute any logic operation). Object properties 
are inferred as chain axioms (e.g., computes results from the combination of the properties has component, 
encodes, and determined by). We trace the provenance of the data stored in the database by indentifying 
the digital organisms that participate in an avida experiment reported in a scientific paper. In 
order to facilitate reproducibility in the results obtained from an avida experiment, we store the different 
configuration files associated to a particular experiment (e.g., analyze configuration file) as instances 
of their corresponding classes.
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Key properties such as computes, encodes and executes depend on the computational environment 
experienced by a digital organism (i.e., the seed used for starting the pseudo-random number generator). For 
example, the environment may modify the phenotype encoded by the genome of a digital organism every time an 
input-output instruction code is executed. Since this instruction code takes the content of the BX register of a dig-
ital organism and outputs it, checking it for any logic operations that may have been computed on the two 32-bit 
binary numbers stored in its input buffers, the phenotype of a digital organism depends on the content of the 
BX register when an input-output instruction code is executed, and this content depends initially–and later on, 
every time an input-output instruction code is executed–on the environment. Then, although the same genome 
could execute the same sequence of instruction codes in different environments, their BX registers might contain 
different binary numbers and hence, the input-output instruction code would output different binary numbers 
that might not be the result of computing the same logic operation. Therefore, the way the genome of a digital 
organism encodes a specific phenotype in a particular environment is implemented through the use of contain-
ers. A container is an RDF resource used to represent collections (https://www.w3.org/TR/rdf-schema/#ch_seq). 
Specifically we use the contained rdf:Seq because it preserves the order of each item stored in the container 
(e.g., rdf:_1, rdf:_2, …)–representing the environment or value of the seed–that are instances of the class 
rdfs:ContainerMembershipProperty (see an example of use by running a SPARQL query in the next 
section).

•	 computes: a relation between a digital organism and a logic operation, in which the digital organism per-
forms the logic operation by executing the instruction codes harbored in its genome.

•	 encodes: a relation between the genome and the phenotype of a digital organism, in which the genome 
contains information that is used to produce the phenotype.

•	 executes: a relation between a digital organism and its transcriptome, in which the instruction codes har-
bored in its genome are executed to produce the transcriptome.

•	 mutant of: a relation between two digital organisms where their genomes differ in a single instruction 
code.

Datatype properties. Only 16 datatype properties are included at this time (without including imported 
terms), but many more will be introduced in a near future. Since viable (i.e., the ability of a digital organism 
to produce an offspring able to replicate by executing its genome) and genome length executed (i.e., 
the number of instruction codes–out of the total number of instruction codes comprising a digital organism’s 
genome–that are executed by a digital organism during the replication process) might depend on the environ-
ment experienced by a digital organism (i.e., the seed used for starting the pseudo-random number generator), 
they are also implemented through the use of containers.

•	 genome instruction sequence: a genome instruction sequence is a linear string of letters represent-
ing the instruction codes that make up the genome of a digital organism.

•	 transcriptome instruction sequence: a transcriptome instruction sequence is a linear string 
of letters representing the instruction codes that make up the transcriptome executed by a digital organism.

•	 viable: the ability of a digital organism to produce an offspring able to replicate by executing its genome.

Quering avidaDB. We take advantage of the phenotypic plasticity of digital organisms (i.e., the capability of 
the genome of a digital organism to encode different phenotypes in distinct computational environments) to illus-
trate the use of OntoAvida. We access the endpoint of avidaDB (https://graphdb.fortunalab.org) as anonymous 
user (i.e., username and password public_avida). The following SPARQL query retrieves the phenotypes 
encoded by the genome #273485 in 1000 distinct environments (see Fig. 2):

PREFIX ONTOAVIDA: http://purl.obolibrary.org/obo/ONTOAVIDA_
PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#
PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
SELECT?genome_id?seed?phenotype_id
WHERE {

?genome_id ONTOAVIDA:00001198?phenotype_seq.
?phenotype_seq?seed?phenotype_id.
?seed rdf:type rdfs:ContainerMembershipProperty
FILTER(?genome_id = ONTOAVIDA:genome_273485)

}

The term ONTOAVIDA:00001198 (encodes seq) represents the relation between the genome 
of a digital organism and the container storing the phenotypes encoded by the genome in different environ-
ments (encodes at seed, being seed the integer used for starting the pseudo-random number gen-
erator). The object of the first triple of the WHERE clause (?phenotype_seq) is the container storing 
the phenotypes encoded by the genome of a digital organism in each environment. The triple?pheno-
type_seq?seed?phenotype_id obtains the members of the container, where?seed takes values 
rdf:_1, rdf:_2, …, and are instances of the class rdfs:ContainerMembershipProperty. The 
value rdf:_1 points at the phenotype encoded at seed = 1. For example, the first line of the output of this 
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query, ONTOAVIDA:genome_273485 rdf:_1 ONTOAVIDA:phenotype_273, means that genome 
#273485 encodes phenotype #273 at seed = 1.

Discussion
We have developed OntoAvida following the principles set by the Open Biological and Biomedical Ontologies 
(OBO) Foundry32, which are clearly aligned with the FAIR principles (i.e,. shared data should be Findable, 
Accessible, Interoperable, and Reproducible). Currently, OntoAvida is listed in the OBO registry (http://obo-
foundry.org) after passing the validation checks performed by the ROBOT software suite33.

OntoAvida is a valuable tool to perform studies that lie at the intersection of evolutionary biology and com-
puter science. Its potential transcends traditional academic boundaries and will definitely provide fertile ground 
for new collaborations bridging these disciplines. Our ontology will appeal not only to students of evolutionary 
biology and computer science, but also to synthetic biologists, systems engineers, students of the origin of life, 
and philosophers.

Methods
We used ROBOT commands33 to automatize the process of developing OntoAvida (Fig. 3). Next, we describe 
this process step by step.

Selecting terms from external ontologies to reuse them. We identified the terms that can be reused 
from existing external ontologies, instead of creating new ones. When a term from our ontology was defined 
in more than one external ontology, we selected the ontology listed in the OBO registry because OntoAvida is 
intended to be part of an interoperable ecosystem with reuse of shared terms and relations34. We have reused 
classes from the following OBO ontologies: FlyBase controlled vocabulary (FBcv), Sex, Gender, and Sexual 
Orientation (GSSO) ontology, The Statistical Methods Ontology (STATO), and NCI Thesaurus OBO Edition 
(NCIT). All object properties reused from external ontologies come from the Relation Ontology (RO). Before 
extracting these terms and relations, we used a shell script that CURLs the external ontologies from their source 
URIs to download their latest versions. Then, we used the Syntactic Locality Module Extractor (SLME) algorithm 
from ROBOT to extract the terms as fix-point nested modules (STAR). We finally removed unwanted terms 

Fig. 2 Ouput of the SPARQL query reported in the main text (first 8 lines). The SPARQL query retrieves, from 
avidaDB, the phenotypes encoded by the genome #273485 in 1000 distinct environments (from seed = 1 
to seed = 1000). The predicate of the triples, seed, takes values rdf:_1, rdf:_2,…, which are instances 
of the class rdfs:ContainerMembershipProperty. That is, the value rdf:_1 points at the phenotype 
encoded by the genome at seed = 1. The first 8 lines of the table indicate that genome #273485 encodes 
phenotype #273 at seed = 1, seed = 3, seed = 4, seed = 5, seed = 6, and seed = 7, phenotype 
#272 at seed = 2, and phenotype #0 (i.e., merely-viable organisms) at seed = 8.
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and annotations from the imported modules using remove and filter, and performed a quality control check 
on the extracted modules using report.

Integrating new terms proposed by contributors. Contributors can propose new terms by adding 
them in template files (one for classes, another for object properties, and a third one for datatype properties). 

Fig. 3 Ontology workflow. We automatized the development of the ontology using the following ROBOT 
pipeline (from top to bottom): selecting terms from external ontologies to reuse them (extract); integrating 
new terms proposed by contributors (template); merging imported and template modules with the core 
ontology (merge); checking the logical consistency of the ontology (reason, reduce, and annotate); 
and releasing the ontology (convert).
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We converted the template files into OWL modules using template. Then, we annotated the modules using 
annotate, and performed a quality control check on the annotated template modules using report.

Merging imported and template modules with the core ontology. The core OntoAvida ontology 
was built using Protégé35. We used merge to combine the imported modules, the template modules and the core 
ontology that contains the novel terms and relations edited in Protégé. We then performed a quality control check 
on the merged ontology using report.

checking the logical consistency of the ontology. We checked the logical consistency of the merged 
ontology using the following ROBOT commands: reason to perform an automatic classification of terms that 
involves asserting all inferred superclasses, relax to relax Equivalence Axioms to weaker SubClassOf axioms, 
and finally reduce to remove any redundant axioms introduced by the relax step. Then, we updated annota-
tions before releasing the ontology (e.g., dated version IRI) using annotate, and validate the OWL-DL profile 
using validate-profile.

Releasing the ontology. We used verify to create a list of terms (i.e., reporting the new terms added to 
the previous release of the ontology). We also converted the OWL annotated ontology to OBO (a format widely 
used in life science related ontologies) using convert. Finally, we renamed the latest version of the ontology as 
OWL and OBO files to stamp the date and placed them in the release folder of the GitLab repository .

Data availability
The endpoint of avidaDB (e.g., SPARQL GUI) can be accessed as anonymous user (i.e., username and password 
public_avida) at https://graphdb.fortunalab.org.

code availability
The ontology is available in both OBO and OWL format from the GitLab repository (https://gitlab.com/
fortunalab/ontoavida) and can be found at https://gitlab.com/fortunalab/ontoavida/-/blob/master/ontoavida.
obo and https://gitlab.com/fortunalab/ontoavida/-/blob/master/ontoavida.owl. OntoAvida OBO and OWL 
files are also available from the OBO Foundry (http://www.obofoundry.org/ontology/ontoavida.html). All files 
are available under the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/) which allows for the copying, redistribution and adaption of the ontology for any purpose.

pyLODE (https://github.com/rdflib/pyLODE) was used to obtain a user-friendly visualization of the ontology. 
pyLODE is based on the OWL Documentation Environment tool (LODE), implemented in Python, and used 
to generate human-readable HTML documents for OWL and RDF ontologies. We have customized the original 
pyLODE templates (https://gitlab.com/fortunalab/pyLODE) to convert a scheme of OntoAvida, in a HTML file 
so that its classes, object properties, and datatype properties can be easily visualized (Fig. 4). The pyLODE file of 
OntoAvida is available at https://owl.fortunalab.org/ontoavida.

Received: 11 April 2023; Accepted: 30 August 2023;
Published: xx xx xxxx

Fig. 4 pyLODE visualization of OntoAvida. Screenshot of the HTML file generated for documenting the 
classes, object properties, and datatype properties of OntoAvida in an easy way.
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