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Abstract

In this paper, we compile the network of software packages with regulatory interactions (dependences and conflicts) from Debian

GNU/Linux operating system and use it as an analogy for a gene regulatory network. Using a trace-back algorithm we assemble

networks from the pool of packages with both scale-free (real data) and exponential (null model) topologies. We record the maximum

number of packages that can be functionally installed in the system (i.e., the active network size). We show that scale-free regulatory

networks allow a larger active network size than random ones. This result might have implications for the number of expressed genes at

steady state. Small genomes with scale-free regulatory topologies could allow much more expression than large genomes with exponential

topologies. This may have implications for the dynamics, robustness and evolution of genomes.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last years an increasing number of systems have
been described as networks (i.e., a set of nodes connected
between them by links) and represented as graphs (e.g.,
Strogatz, 2001; Albert and Barabási, 2002; Newman, 2003).
Physical and social systems such as the World Wide Web
(Albert et al., 1999; Huberman and Adamic, 1999), the
Internet (Doyle et al., 2005), the worldwide air transporta-
tion network (Guimerá and Amaral, 2004; Guimerá et al.,
2005), networks of acquaintance or other connections
between individuals (Newman et al., 2002; Liben-Nowell
et al., 2005), scientific collaboration networks (Newman,
2001; Barabási et al., 2002), and the network of human
sexual contacts (Liljeros et al., 2001) are all examples of
different systems studied under the network approach.

In addition, biological systems such as food webs (Paine,
1966; Cohen, 1978; Pimm, 1982), plant–animal mutualistic
networks (Bascompte et al., 2003; Jordano et al., 2003),
metabolic networks (Jeong et al., 2000; Ravasz et al., 2002),
e front matter r 2007 Elsevier Ltd. All rights reserved.
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protein networks (Jeong et al., 2001; Giot et al., 2003;
LaCount et al., 2005), and gene regulatory networks
(Davidson et al., 2002; Luscombe et al., 2004), have also
been explored using graph-theory methods. Perhaps the
most challenging of such biological networks is that
governing gene expression in a cell.
In a genome, thousands of genes direct the formation of

proteins, including transcription factors that can activate
or inhibit the transcription of genes to give mRNAs. Since
these transcription factors are themselves products of
genes, the ultimate effect is that genes regulates each
other’s expression as a part of gene regulatory networks
(Davidson, 2001; Guelzim et al., 2002; Lee et al., 2002;
Albert, 2005). The patterns of regulatory interactions at
genomic scale (in which genes can affect each other’s
expression) are becoming increasingly resolved (Davidson
et al., 2002; Guelzim et al., 2002; Lee et al., 2002; Stuart
et al., 2003; Luscombe et al., 2004).
Recent evidence from whole-genome sequence suggests

that organismal complexity arises much more from the
elaborate regulation of gene expression than by the genome
size itself (Knight, 2002; Levine and Tjian, 2003). In this
context, previous results on small subsets of genes (Albert
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and Othmer, 2003) have shown that the robustness of the
network is depending on the topology (i.e., the distribution
of the number of interactions a gene participates in) and
the signature of regulatory interactions (i.e., whether the
interaction activates or inhibits a gene). The effects of the
topology of regulatory interactions on gene expression in
large networks are, however, difficult to asses because the
interaction signature is only known for a small subset of
genes (Davidson et al., 2002; Guelzim et al., 2002; Lee
et al., 2002; Albert and Othmer, 2003; Luscombe et al.,
2004, see, however, Madan Babu et al., 2006).

2. Methods and results

In the present study we compiled the network of
software packages of Debian GNU/Linux operating
system along with their dependence and conflict interac-
tions with the aim of shedding some light on the effect of
the regulatory network structure on the number of active
transcriptors. The interactions between software packages
we consider to be regulatory interactions in the sense that
they may or may not allow the installation of packages in
the system. On the one hand, the package i depends (kdep)
of the package j when j has to be installed for i work (i.e., j

activates i because i needs j to work). On the other hand,
the package i has a conflict (kcon) with the package j when i

does not work if j is installed in the system (i.e., j inhibits i).
It does not necessarily mean that the package j also has a
conflict with the package i (sometimes the package j is an
improved version of the package i in a way that if i is
already installed in the system then j improves it, but if j is
installed then it already contains i and the later cannot be
installed). Because links are directed we can find packages
with ingoing and outgoing links (kin and kout, respectively).
In a detailed picture of the network, we can identify all
node types as a function of their kin and kout interactions.
On the one hand, packages with just k

dep
in 40, packages

with just kcon
in 40, and packages with both k

dep
in 40 and

kcon
in 40, if they depend or have a conflict with other

packages, or both, respectively. On the other hand,
packages with kdep

out40, packages with kcon
out40, and

packages with kdep
out40 and kcon

out40, if other packages
depend or enter into conflict with them, or both,
respectively.

To clarify the relationship between a regulatory gene
network and the dependence network of software packages
we must simplify the former. A gene network has two types
of nodes, which correspond to transcription factors and the
genes encoding them, and two types of directed links,
which correspond to transcriptional regulation and trans-
lation (Lee et al., 2002). For simplicity, transcription
factors are often combined with the genes encoding them
(thus all nodes correspond to genes), and transcription and
translation are condensed to one link (the assumption
being if any of both processes happens, the other occurs
too; see Albert, 2005). The nodes representing target
genes that do not encode transcription factors become
sinks (the above described packages with kout ¼ 0) while
non-transcriptionally regulated transcription factors corre-
spond to sources (kin ¼ 0). If the gene i encodes a
transcriptional factor that activates the transcription of
the mRNA of the gene j it will be said that the gene i

activates the gene j, and if the gene i encodes a
transcriptional factor that inhibits the transcription of the
mRNA of the gene j it will be said that the gene i inhibits
the gene j. These types of regulatory interactions are quite
analogous to dependences kdep and conflicts kcon in the
network of software packages. Hence, if a gene i has
k

dep
in 40 interactions it means that a k number of genes are

needed to activate it. In the same way, if a gene i has
kdep

out40 interactions it means that the gene i encodes a k

number of transcriptional factors that activate other genes.
Similarly, inhibition is analogous to conflict, kcon.
Let us now assume that the rules governing the

transcription of a gene are determined by a Boolean
function of the state of its transcriptional activators and
inhibitors (Kauffman, 1969; Albert and Othmer, 2003).
Transcription will only begin if the activators are expressed
and the inhibitors are not (Kauffman, 1969). The effect of
transcriptional activators and inhibitors is never additive,
but rather inhibitors are dominant. The states of the nodes
evolve in discrete time steps under several rules to a steady
state in all nodes (Albert and Othmer, 2003). Each steady
state or fixed point has a specific number of active and
inactive transcriptors. The total number of active genes in
each steady state represents the active network size. After n

replicates of the network, the frequency of each steady state
represents the distribution of the active network size (see Li
et al., 2004, table 1).
Although we have defined the similarities between

transcriptional and dependence networks, we should point
out that there are some particularities of gene networks
that preclude a full comparison of the two types of
networks. Specifically, the self-degradation processes, the
complex dynamics of activator and repressor, and the
feedback circuits in which some genes are embedded make
a perfect comparison difficult. In the Boolean network
model, and in real gene networks, in addition to fixed
points, cyclic attractors may also exist (Kauffman, 1969).
This is not the case for the dependence network of software
packages, in which a steady state of installed packages is
reached once no more packages can be installed without
entering into conflict with the previously installed
packages. Another important difference is that in the
Boolean network model the set of genes that are expressed
in the attractors may be very different from the set
of genes that were originally expressed in the initial
condition. In contrast, in the dependence network of
software packages all the installed packages (expressed
genes) are retained throughout time, so that at the end
all the packages that were originally installed remain
installed. The analogy we can obtain, however, is the
similarity of the final states in both types of networks.
The total number of active genes in gene networks or
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packages installed in software networks makes possible the
comparison. At this level, does the number of activated
nodes depend on the structure of regulatory interactions?
Or in a more specific gene context, could small genomes
with scale-free regulatory topologies allow much more
gene expression than large genomes with exponential
topologies?

To test the effect of the topology of a large regulatory
network on the maximum number of activated nodes
(hereafter active network size) we develop a null model (see
Null model section) that (1) preserves the total number of
dependences and conflicts as in the real network, and (2)
maintains statistically the frequency of packages with
different combinations of ingoing and outgoing interac-
tions for dependences and conflicts (Fig. 1), but forcing
them to an exponential degree distribution (Fig. 2a,c). The
degree distribution PðkÞ gives the fraction of nodes that
have degree k and in directed and signed networks (as in
this case) is measured for both ingoing (kin) and outgoing
(kout) links for dependences (kdep) and conflicts (kcon). An
exponential degree distribution implies that nodes have a
well-defined average number of links. A power-law degree
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Fig. 1. Hypothetical graph illustrating the type of packages as a function

of their kin (number of incoming edges per node) and kout (number of

outgoing edges per node) and types of interactions (solid arrows represent

dependences kdep (number of dependences per node), and dotted arrows

conflicts kcon (number of conflicts per node)). Packages with k
dep
in 40 (e.g.,

package number 5000), kcon
in 40 (e.g., package number 800) or both (e.g.,

package number 2000) mean that they depend or have a conflict with other

packages, or both, respectively. Packages with kdep
out 40 (e.g., package

number 1) or kcon
out 40 (e.g., package number 3000) or both (e.g., package

number 2500) mean that other packages depend or enter into conflict with

them, or both, respectively. The total number of packages with each type

of incoming and outgoing link in the network is n (in brackets the average

value after 1000 replicates of the null model). Intervals in the horizontal

bars correspond to the number of each type of package in the null model:

packages with kcon
in 40 or kcon

out40 (dark gray); packages with k
dep
in 40 and/

or kdep
out40 (white); packages with k

dep
in 40 and kcon

in 40, or kdep
out40 and

kcon
out40 (light gray); and packages with kin ¼ 0 or kout ¼ 0 (black, not

shown in the above graph).
distribution, on the other hand, indicates a much higher
variability in the number of links per node. That is, the
bulk of nodes have a few links, but a few nodes are much
more connected than expected by chance. The rules of the
null model avoid (1) dependence loops (i.e., if the package i

depends of the package j, the package j or whatever it
depends on cannot depend of the package i), and (2)
contradictory links (i.e., if the package i depends on the
package j, the package j or whatever it depends on cannot
have a conflict with the package i).
We assembled 1000 replicates (dependence networks)

from both real data (power-law degree distribution) and
data from the null model (exponential degree distribution,
see Fig. 2a,c) using a trace-back algorithm (see Trace-back
algorithm section) and recorded the active network
size in each replicate. Note that as a function of the
assembly temporal sequence, each replicate from real data
and data from the null model has a different number of
packages installed. In this way we obtain the frequency
distribution of the active network size from both real data
and data from the null model (Fig. 2b). The frequency
distribution of the active network size from data of the
null model is significantly smaller than from the real data
(Fig. 2b).
Our results suggest that genomes with scale-free reg-

ulatory topologies could allow a higher number of
expressed genes at the steady state than genomes with
exponential topologies. Rewiring connections instead of
increasing the number of genes seems to be an alternative
mechanism to enhance the expression of the network
(Knight, 2002; Stuart et al., 2003; Luscombe et al., 2004).
Recently, Mochizuki (2005) has showed that the diversity
of cell states does not increase with either gene number or
links number, but is instead highly influenced by the
number of regulatory genes. This indicates that increases in
the number of genes may not be the direct force driving the
evolution of variety of cell types. The present study offers
also a framework to explore the real ratios of activating
and inhibiting interactions in large gene networks when
large databases become available.

3. Data set

The regulatory network described here is composed by
the binary i386 packages belonging to the sections main,
contrib and non-free of the recently obsolete stable release
of Debian distribution (3.0, alias Woody), available from
the US Debian Server (http://www.us.debian.org/releases/
woody/). It includes 8996 nodes (packages), and 31,904
regulatory interactions (30,003 dependences and 1901
conflicts).

4. Null model

We first coded the packages as a function of the type of
link. For kin interactions: (1) packages with k

dep
in ¼ 0 and

kcon
in ¼ 0, from 1 to 798 (798 packages without kin

http://www.us.debian.org/releases/woody/
http://www.us.debian.org/releases/woody/
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Fig. 2. (a) Cumulative kin degree distributions of the null model (left side) and real data (right side). All degree distributions are marginally significant for

both the null model (k
dep
in , n ¼ 7894; kcon

in , n ¼ 944), and real data (k
dep
in , n ¼ 8105; kcon

in , n ¼ 1204), decaying exponentially (P ¼ 0:07 and 0:07, respectively)
for the null model, and as a power law for real data (P ¼ 0:1 for the first regression, and P ¼ 0:1 for the second with a breakpoint in k ¼ 15 (solid arrow),

and P ¼ 0:07, respectively). The degree distribution of the null model represents the average value for 10 replicates. (b) The frequency distribution of the

active network size differs from a normal distribution for real data (right, Jarque-Bera test, Po0:05, with an average active network size of 7647 packages)

and does not differ from a normal distribution for the null model (left, Jarque-Bera test P ¼ 0:2, with an average network size of 4750 packages). No

replicate from the null model distribution is equal or higher than any replicate from the real data distribution (Po0:0001). (c) Cumulative kout degree

distributions of the null model (left side) and real data (right side). Degree distributions for the null model are significant (kdep
out , n ¼ 2821), and marginally

significant (kcon
out , n ¼ 941), decaying exponentially in both cases (Po0:05 and 0:09, respectively). Degree distributions for real data are significant (kdep

out ,

n ¼ 2821), and marginally significant (kdep
out , n ¼ 1148), decaying in both cases as a power law (Po0:05 and 0:08, respectively). The degree distribution of

the null model represents the average value for 10 replicates.
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interactions as in the real network); (2) packages just with
kcon

in 40, from 799 to 891 (93 packages as in the real
network); (3) packages with kcon

in 40 and k
dep
in 40, from 892

to 2002 (1111 packages as in the real network); and (4)
packages just with k

dep
in 40, from 2003 to 8996 (6994

packages as in the real network). For kout interactions: (1)
packages just with kdep

out40, from 1 to 2258 (2258 packages
as in the real network); (2) packages with kdep

out40 and
kcon

out40, from 2259 to 2821 (563 packages as in the real
network); (3) packages just with kcon

out40, from 2822 to 3406
(585 packages as in the real network); and (4) packages
with kdep

out ¼ 0 and kcon
out ¼ 0, from 3407 to 8996 (5590

packages without kout interactions as in the real network).
Now we choose randomly a package i and a package j for
each dependence (30,003) and conflict (1901) in the
following way: (1) if the link is a dependence, we randomly
choose a package i from the range of packages with k

dep
in 40

(range 892–8996) and a package j from the range of
packages with kdep

out40 (range 1–2821) according with the
following rule: the code of the package i must be bigger
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than the code of the package j. (2) if the link is a conflict,
we randomly choose a package i from the range of
packages with kcon

in 40 (range 799–2002) and a package j

from the range of packages with kcon
out40 (range 2259–3406)

according with the following rule: the code of the package i

must be smaller than the code of the package j. Both
conditions avoid dependence and conflict loops and also
contradictory links.

The correspondence between the number of packages of
each type in the real network and the average values from
the null model after 1000 replicates is shown in Fig. 1.
5. Trace-back algorithm

Trace-back algorithm selects randomly a package,
checks dependences and conflicts of this package with the
rest of packages of the network, and whether they are
installed or not in the network. If the package has a conflict
with an already installed one, it is discarded and never will
be part of the network. If there are no conflicts with
installed packages, the algorithm checks whether some of
the packages on which it depends directly or indirectly
(by successive dependences) has been discarded or has a
conflict with an already installed package. If so, is
discarded too. Otherwise, is installed with all packages on
which it depends directly as well as indirectly. It continues
until no more packages are available to be included
(i.e., packages excluded by the assembly temporal sequence
due to their conflicts with packages already installed).
Before starting each replicate, we have automatically
installed the 100 packages considered basic to the
system works (base-packages section in the URL indicated
in Data set).
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Appendix A. Supplementary data

Supplementary data1 associated with this article can be
found in the online version at 10.1016/j.jtbi.2007.03.017.
1The network used is available as a text file, and both the null model

applied and the trace-back algorithm developed are available as a MatLab

code.
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