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Summary

1. Temporal variation in the direct and indirect influence that hosts and parasites exert on

each other is still poorly understood. However, variation in species’ influence due to species

and interactions turnover can have important consequences for host community dynamics

and/or for parasite transmission dynamics, and eventually for the risk of zoonotic diseases.

2. We used data on a network of small mammals and their ectoparasites surveyed over

6 years to test hypotheses exploring (i) the temporal variability in direct and indirect influ-

ences species exert on each other in a community, and (ii) the differences in temporal variabil-

ity of direct/indirect influences between temporally persistent (TP) and temporally

intermittent species.

3. We modelled the temporal variation in (i) direct reciprocal influence between hosts and

parasites (hosts providing resources to parasites and parasites exploiting the resources of

hosts), using an asymmetry index, and (ii) indirect influence among species within a commu-

nity (e.g. facilitation of parasite infestation by other parasites), using betweenness centrality.

We also correlated asymmetry and centrality to examine the relationship between them.

4. Network dynamics was determined by TP species but even those species had strong

among-species heterogeneity in the temporal variation of the direct/indirect effects they

exerted. In addition, there was a significant positive linear correlation between asymmetry

and centrality.

5. We conclude that the temporal dynamics of host–parasite interactions is driven by TP

hosts. However, even within this group of persistent species, some exhibit large temporal vari-

ation, such that the functional roles they play (e.g. in promoting parasite transmission)

change over time. In addition, parasites having a large negative impact on hosts are also

those facilitating the spread of other parasites through the entire host community. Our results

provide new insights into community dynamics and can be applied in the management of

antagonistic networks aimed at preventing disease outbreaks.
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Introduction

The temporal dynamics of host–parasite interactions has

been a major theme in evolutionary and disease ecology,

especially in the context of diseases spread within a popu-

lation. Traditional approaches address the rate at which a

given parasite (or pathogen) invades a population of a

given host (Anderson & May 1991). However, host spe-

cies usually harbour more than one parasite species, while

the majority of parasite species can exploit more than

one host species, with the resulting interactions being*Correspondence author. E-mail: spilosof@post.bgu.ac.il
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extremely complex (Vázquez et al. 2005, 2007; Ezenwa &

Jolles 2011). Consequently, recent studies have started to

aim to understand host–parasite interactions at a commu-

nity scale (Begon 2008; Rohani et al. 2008), but these

studies usually examine each of the communities sepa-

rately without considering the added dimension of time.

A complex system of host–parasite interactions can be

depicted as a bipartite network where nodes represent spe-

cies and in which nodes from one set (e.g. hosts) are

allowed to interact only with nodes of the other set (e.g.

parasites) (Vázquez et al. 2005). Despite considerable

research efforts on such antagonistic bipartite networks,

very few studies address their dynamic aspect. One study

of a host–parasitoid network has shown that the structure

of the host and parasitoid communities changes over time

and that the dynamics is affected by human activities

(Laliberté & Tylianakis 2010). Here, we address an

additional aspect and explore the temporal dynamics of

species’ functional roles. This topic has never been stud-

ied, despite the profound ecological consequences of

host–parasite dynamics to host and parasite populations

or communities (Hudson, Dobson & Newborn 1998;

Beldomenico et al. 2008).

The interdependency of species in a network creates a

wealth of pathways by which species can influence each

other. Direct reciprocal influence can be defined as the

positive effect of a host on a parasite (e.g. providing it

with resources) and the negative effect of a parasite on a

host (e.g. exploiting its resources). For simplicity, we refer

to this influence as a direct effect. In a host–parasite net-

work, direct effects can be captured by using indices of

interaction asymmetry estimated via relative abundances,

reflecting the overall direct influence of a focal species on

other species with which it interacts (Vázquez et al. 2007).

In particular, parasite i would have a direct strong influ-

ence on its host j if its abundance on that particular host

is high relative to the abundance of all other parasites

infesting the host. Similarly, a host j would have a direct

strong influence on a parasite i if the parasite’s abundance

is high in that particular host, relative to the parasite’s

abundance on all the other hosts it infests. When the

influence of parasite i on host j is stronger/weaker than

the influence of host j on parasite i, the nature of the

interactions between i and j is considered asymmetric

(Vázquez et al. 2007). This definition of direct effects

assumes a negative linear relationship between parasite

abundance and host fitness and an equal effect of para-

sites on hosts. Although these assumptions are somewhat

limiting (see Discussion), they are rooted in true biological

processes (Lehmann 1993). For example, studies on small

mammals demonstrated negative relationships between

parasite loads and host fitness (Arnold & Anja 1993; Van

Vuren 1996; Neuhaus 2003; Hawlena, Abramsky &

Krasnov 2006).

Indirect influence is considered within each community.

By indirect influence, we mean the negative role that a

host species plays in contributing to infestation of other

host species by parasites and the positive role a parasite

species has in facilitating the infestation of a host by other

species of parasites (Krasnov et al. 2005). Hosts infested

by many parasite species can propagate horizontal trans-

mission of parasites across the network to other hosts and

thus serve as reservoirs of parasites. A parasite species

can facilitate the infestation of other parasite species by,

for example, initiating a primary immune response, lower-

ing the defence threshold of the host and making it more

susceptible to attacks by other parasites (Krasnov et al.

2005; Leung & Poulin 2007). A recent study on apparent

competition in a host–parasitoid network has clearly

shown that the experimental removal of specific hosts

indirectly reduced parasitism of other hosts that are

attacked by parasitoids of the removed species (Morris,

Lewis & Godfray 2004).

One way of capturing indirect effects is by using cen-

trality measures, which indicate the relative importance of

a node in a network (Freeman 1979). Detecting central

nodes has been a major issue in social network research,

but less so in ecological networks (e.g. Fortuna et al.

2009; Martı́n González, Dalsgaard & Olesen 2010;

Anderson & Sukhdeo 2011). In social sciences, centrality

measures quantify a focal node’s potential in mediating

the transmission of information. In individual-based host

networks, host centrality is positively correlated with

efficiency of parasite transmission (Fortuna et al. 2009;

Salathé et al. 2010). In food webs, host centrality was a

consistent predictor of parasite diversity of a host species

(Anderson & Sukhdeo 2011). Thus, in a host–parasite net-

work, a central host species potentially transmits parasites

to many other host species, and a central parasite species

potentially facilitates the establishment of other parasite

species in/on a host. The centrality of a node depends not

only on its traits (e.g. host specificity of a parasite), but

also on the availability and behaviour of other nodes in

the network (Freeman 1979). This is important in the con-

text of this study because the centrality of a focal node

may vary if the availability of other nodes varies over

time.

Examining the temporal dynamics of species’ asymme-

try and centrality in host–parasite networks is crucial for

a better understanding of the dynamics of the propaga-

tion of a parasite or a pathogen throughout the network,

which has applied consequences. For example, from a

population dynamics perspective, strong temporal varia-

tion in host–parasite interactions may affect the regula-

tion of host populations by parasites (Hudson, Dobson &

Newborn 1998). Here, we use data from a 6-year survey

of small mammals and their arthropod ectoparasites (fleas

and gamasid mites) to investigate the temporal dynamics

of species’ direct and indirect influences at species and

community levels.

Recent studies have shown that community composi-

tion is dynamic, with some species/interactions occurring

in certain years, but not in others (Olesen, Stefanescu &

Traveset 2011). We explore this phenomenon in our study
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system. Due to the variability among species within a

community in their patterns of interactions (Olesen,

Stefanescu & Traveset 2011; Poisot et al. 2012), we

hypothesized (H1) that temporal variability in direct and

indirect influences would differ across species within a

community. This hypothesis is not at all obvious because

if, due to the high intimacy characteristic to host–parasite

interactions, the associations between hosts and parasites

are maintained across years, then temporal variability in

species influence will be homogenous across species within

a community. We examined this hypothesis by focusing on

species that persisted in the system throughout the 6 years

(hereafter, core species). Core species persist in the system,

but their interactions with other species may be dynamic

(Olesen, Stefanescu & Traveset 2011; Poisot et al. 2012).

In order to take into account the fact that some species

were more temporally persistent (TP) in the system than

others, we defined species that occurred in the network for

>2 years (not necessarily consecutive) as TP or otherwise

as temporally intermittent (TI). We examined the hypoth-

esis (H2) that the TP and TI species would differ in their

temporal variability of direct/indirect influence because

intermittent species have fewer opportunities to interact

with other species. Finally, we tested the relationship

between asymmetry and centrality by correlating them at

the species level within each community. A positive corre-

lation would indicate that species that exert more direct

influence also have a greater indirect influence.

Materials and methods

data set

We used a comprehensive data set on fleas and gamasid mites

collected from the bodies of small mammalian hosts in the vicin-

ity of the city of Novosibirsk (Russia; 54°51′16�92″N, 83°6′24�48″
E) during a 6-year (1982–1987) survey (Krasnov et al. 2010).

Fleas are obligate haematophagous ectoparasites most abundant

and diverse on small- and medium-sized mammals. In most fleas,

all stages of the life cycle are spent off the host, except for the

adults that feed intermittently on the host, while spending the rest

of lives in a burrow or nest of a host. The mites included in our

networks were both facultative and obligatory haemato- and/or

lymphophages. These mites use their hosts both as food sources

and as dispersal vehicles, and thus, the association between these

mite species and their hosts is assumed to be very intimate (Ra-

dovsky 1985). As is the case for fleas, gamasid mites spend much

time in hosts’ burrows. Transmission of fleas and mites from host

to host is usually achieved via visiting each other’s burrows,

although transmission via direct between-host contacts (Krasnov

& Khokhlova 2001) and free active or passive dispersal (Vinarski

et al. 2007) cannot be ruled out.

Our analyses were limited to host species for which at least 10

individuals were captured. To remove any possible effect of sam-

pling contamination or accidental host–parasite associations, only

host–parasite associations in which a host species harboured �
5% of all individuals of a parasite species were used (Dick 2007).

Prior to main analyses, the sampling effort in each year was esti-

mated using species accumulation curves. The curves showed that

the trapping sessions each year were sufficient to detect all host

species present in the community in that year (see Appendix S1,

Supporting information). This allowed us to assume that the

sampling effort was equal among the years.

For each yearly survey, a matrix with rows representing host

species and columns representing parasite species was constructed

(see Data accessibility). The strength of an interaction between a

parasite and a host was measured via the mean abundance of a

parasite species on a host species (i.e. the mean number of para-

sites of a given species per individual of a given host species).

The matrix cell values thus represented the interaction strength

between any pair of interacting species. Abundance values were

rounded to the nearest integer. When mean abundance was <0�5,
we set a value of 1.

network analysis

Species turnover and network connectance

The yearly turnover of species and interactions was calculated

following Olesen, Stefanescu & Traveset (2011). The mean annual

species/interaction turnover t was calculated as (e/(e + s) + c/

(c + s))/2, where e was the number of extinctions (the species/

interaction appeared in year y, but not in year y + 1), c was the

number of colonizations (did not appear in year y, but appeared

in year y + 1), and s was the number of survivals (appeared in

both years y and y + 1) for a given species/interaction. To evalu-

ate the general structure of the whole network, the network con-

nectance was calculated as the number of realized interactions

divided by the maximum possible number of interactions in each

year.

Interaction asymmetry

To evaluate the asymmetry in interactions of each species in each

of the yearly subnetworks, we used the asymmetry index Ai of

Vázquez et al. (2007). In brief, the direct influence of parasite i

on host j (Sij) is subtracted from the influence of host j on para-

site i (Sji), where Sij is the interaction strength of parasite i and

host j, relative to the interaction strengths of all other parasites

infesting host j. Similarly, Sji is the interaction strength of host j

and parasite i, relative to the interaction strengths of all other

hosts infested by parasite i. The Ai of a species i is calculated asPJ
j¼1 ðSij � SjiÞ

h i
=ki, where ki is the number of interactions of

species i. The index ranges between �1 and 1, where �1 indicates

that the focal species is strongly affected by its interaction part-

ners (influenced), and 1 indicates that it exerts a strong effect on

them (influential).

Species centrality

We measured centrality using betweenness centrality (BC), which

quantifies the extent to which a focal node lies on the shortest

paths between two other nodes. In biological terms, BC indicates

how efficient a host species is in serving as a mediator for the

transmission of parasites across hosts and how efficient a parasite

is in facilitating the transmission of parasites across hosts. This

interpretation makes BC very informative for our purposes and

we thus focused on it rather than on other indices of centrality.

To calculate BC, the bipartite network was projected into two

unipartite networks, connecting two nodes from the same set
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(e.g. parasite species) if they shared at least one node from the

other set (e.g. host species). Fortuna et al. (2009) used centrality

indices in projected networks and showed a positive correlation

between centrality and pathogen transmission. A similar

approach was taken by Morris, Lewis & Godfray (2004), who

examined apparent facilitation among hosts based on shared par-

asitoids. Betweenness centrality was rescaled by dividing it by the

maximal index value. Rescaled BC values ranged from 0 to 1,

where 1 represents the highest centrality score in a particular net-

work. This aided in the comparison of the importance of differ-

ent host/parasite species across years.

statist ical analyses

Across species within a community, temporal variation in Ai and

BC can be either homogeneous or heterogeneous. When temporal

variation is heterogeneous, the value of Ai or BC varies greatly

across years in some species, while very little in others. Such het-

erogeneity would point to differences among host or parasite spe-

cies in the temporal dynamics of interactions with species from

the opposite group. Our approach was to compare a statistical

model in which the variance component of the fixed factor species

was homogeneous (hereafter, a homoscedastic model) to a model

where it was heterogeneous (hereafter, a heteroscedastic model).

The homoscedastic models were mixed-effects linear models with

year as a random factor and a homogeneous variance compo-

nent, whereby all factor levels (i.e. species) had equal across-year

variance (Zuur et al. 2009). Year was set as a random factor

instead of a fixed continuous variable because we were not inter-

ested in quantifying a trend in either Ai or BC over time (i.e. we

were not interested in a constant increase or decrease), but rather

in its net variation. The counterpart heteroscedastic models were

mixed-effects generalized least-squares models, essentially identi-

cal to the homoscedastic models, except they had a heterogeneous

variance component, allowing each species to have a different

across-year variance (Zuur et al. 2009). In each homoscedastic–

heteroscedastic model pair (Table 1), a better fit of the heteros-

cedastic model to the data would mean that there are differences

among species in the temporal variation of the index. Model

pairs were compared with Akaike Information Criterion (AIC)

(the lower the AIC, the better the model). A difference of >2

AIC was regarded as a threshold to discard one of the models.

Note that temporal variation can be large in the homoscedastic

model, albeit equal among species. It can be argued that values

of Ai or BC of a certain species would be more similar in conse-

quent years. This will be manifested as an autocorrelation

between consecutive model residuals. We visually tested for auto-

correlation in the data using acf plots depicting the empirical

autocorrelation function for the within-group residuals from a

model fit (Pinheiro & Bates 2000). We found no evidence for

autocorrelation in all models.

To test the hypothesis that temporal variability in direct and

indirect influences would differ across species within a community

(H1), the effect of the identity of core species on Ai and BC was

examined within both communities using four model pairs (model

pairs 1–4, Table 1). The models also allowed us to determine

whether a species’ yearly-average Ai and BC indices differed sig-

nificantly from zero. A zero value of Ai indicates that, on aver-

age, there is symmetry in the direct influence between a species

and the species with which it interacts. A zero value of BC for a

focal species means that there are no shortest paths between any

two nodes that pass through the focal node, and thus, its role

can be defined as ‘peripheral’. Otherwise, it can be defined as a

‘connector’ (Martı́n González, Dalsgaard & Olesen 2010).

To test the hypothesis that TP and TI species would differ in

their temporal variability of direct/indirect influence (H2), all the

species within each community were used. We followed the same

modelling procedure we used to test H1 and tested for differences

in asymmetry and centrality between TP and TI species within a

community. Therefore, the fixed factor was persistence (rather

than species) with two levels: TI and TP (model pairs 5–8,

Table 1). Heterogeneous temporal variation would indicate that

TP and TI species differ in the dynamics of their influence in the

network and would thus point to differences in the roles they

play in network formation. A significant effect of persistence in

either model would indicate that, on average, TP and TI species

differ in the direct or indirect influence they exert.

Finally, to understand the relationship between asymmetry and

centrality at the species level within each community, we corre-

lated Ai and BC using Pearson’s correlation. A positive correla-

tion would indicate that species that exert more direct influence

also have a greater indirect influence. We included only the core

species in this analysis.

Analyses were done in R version 2.15 (R Development Core

Team 2012) using the bipartite (version 1.18; Dormann et al.

2009) and nlme (version 3.1-106; Pinheiro et al. 2012) packages.

We provide an R code with all the analytical procedures in

Appendix S2, Supporting information.

Results

Across six years, the network comprised 21 host and 71

ectoparasite species (54 mite species and 17 flea species;

Table S1, Supporting information). In the yearly networks

of 1984, 1985 and 1987, there were no TI hosts, and in

Table 1. List of model pairs used in the analyses. Each pair con-

sisted of two mixed-effects generalized least-squares models with

year as a random factor, where one of the models had a homoge-

nous variance component (Hm) and the other a heterogeneous

variance component (Ht). In the heteroscedastic models, each

species (denoted by j) or persistence level (denoted by k) was

allowed to have different variance. The best model of each pair

was selected by Akaike Information Criterion (AIC)

Model

Variance structure

Hm/Ht

AIC

(Hm/Ht)

Fixed factor speciesa

1 Ai ~ Host species N(0, r2)/N(0, r2j ) 35/5

2 Ai ~ Parasite species N(0, r2)/N(0, r2j ) �3/�81

3 BC ~ Host species N(0, r2)/N(0, r2j ) 43/24

4 BC ~ Parasite species N(0, r2)/N(0, r2j ) 32/�179

Fixed factor persistenceb

5 Ai ~ Host persistence N(0, r2)/N(0, r2k) 63�5/64�4
6 Ai ~ Parasite persistence N(0, r2)/N(0, r2k) 202�1/203�5
7 BC ~ Host persistence N(0, r2)/N(0, r2k) 61/19

8 BC ~ Parasite persistence N(0, r2)/N(0, r2k) 41/2

aModels were run with host/parasite species that persisted for

6 years.
bModels were run on all species within the host/parasite commu-

nity.
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the yearly network of 1987, there were no TI parasites.

Eighty-one per cent of hosts were TP (occurred in more

than 2 years), but only 52% occurred in all 6 years.

Sixty-eight per cent of parasite species were TP, but only

24% of parasites occurred in all 6 years (11 mites, 6 fleas)

(Table S1 and Figs S1 and S2, Supporting information).

Across years, only 265 interactions were realized at least

once, out of 1491 (21 hosts 9 71 parasites) possible ones.

In other words, the connectance of the network aggre-

gated across the years was 17�8% (=265/1491). The yearly

networks were smaller, but their connectance remained

roughly the same (14�9–21�6%).

species and interaction turnover

Host turnover rate ranged from 0 to 1 with a mean � SD

of 0�29 � 0�4 and a median of 0. Mean parasite turn-

over was 0�43 � 0�4, with a median of 0�25. Interac-

tion turnover was high, with 40% of the realized

interactions appearing in 1 year only (Fig. S2, Supporting

information).

hypothesis h1: temporal dynamics of core
species

In across-species analyses of asymmetry, the fit of the het-

eroscedastic model to the data was better than that of the

homoscedastic model for core hosts and parasites (model

pairs 1–2, Table 1). Thus, within each community, the

coefficient estimates of the variance in Ai were small

(close to zero) for some species but large for others, indi-

cating that the direct influence of only some of the species

within a community was variable across years (Fig. 1a,

b). In 45% of core hosts, the yearly-averaged Ai estimated

by the model was significantly greater than zero, and in

one case (a vole Myodes rufocanus), it was significantly

lower than zero (Table 2; see Fig. S3, Supporting infor-

mation, for the raw values of asymmetry for hosts). In

parasites, yearly-averaged Ai estimated by the model was

significantly lower than zero in 71% of core species and,

in no case, it was higher than zero (Table 2; see Fig. S4,

Supporting information, for the raw values of asymmetry

for parasites).
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Fig. 1. Within-species temporal variation in asymmetry (a, b) and rescaled betweenness centrality (c, d) for hosts and parasites.

Temporal variation is represented by the value of the variance coefficient (height of bars) estimated from a mixed-effects generalized

least-squares model with year as a random factor and a heterogeneous variance component, allowing each species to have different

across-year variance. Palettes a-d correspond to models 1–4, respectively (see Table 1). Shade (colour in the online version) strength

indicates how asymmetric (a, b) or central (c, d) a species is, based on model estimates. Only 11 host and 17 parasite species that

occurred in the network for 6 years are included. Species are ordered alphabetically.
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For core host species, the fit of the heteroscedastic

model to the data was better than that of the homosce-

dastic model for BC (model pair 3, Table 1). Temporal

variation in BC was therefore unequal across host species

(Fig. 1c). Furthermore, the three host species with the

lowest variation were also characterized by the lowest BC

across years (a vole Myodes rufocanus, a birch mouse Sici-

sta betulina and a shrew Sorex isodon; Fig. 1c; see

Fig. S5, Supporting information, for the raw BC values

of hosts). The BC model showed that 73% of hosts had a

yearly-averaged BC significantly larger than zero

(Table 2). The results of the model point to a woodmouse

Apodemus agrarius, voles Myodes rutilus and Microtus

oeconomus and a shrew Sorex araneus as the most central

hosts across years, despite their considerable temporal

variation in BC (Fig. 1c).

For core parasite species, the fit of the heteroscedastic

model to the data was better than that of the homosce-

dastic model for BC (model pair 4, Table 1). Therefore,

ectoparasites differed in their degree of the temporal vari-

ation in BC (Fig. 1d). The model revealed that 71% of

core ectoparasites had a BC significantly greater than 0

(Table 2; see Fig. S6, Supporting information, for the raw

BC values of parasites).

hypothesis h2: temporal dynamics of
temporally persistent and intermittent
species

When examining differences in Ai between TP and TI

host species, the fits of both homo- and heteroscedastic

models were equal (model pair 5, Table 1). TI host species

had, on average, lower asymmetry than TP species, but

this difference was not significant (TI: �0�15, TP: 0�04;
t88 = �1�05, P = 0�29). Similarly, within the parasite com-

munity, both homo- and heteroscedastic models equally

fitted (model pair 6, Table 1). In contrast to hosts, TI

parasites had a significantly lower Ai than TP parasites

(TI: �0�61, TP: �0�37; t248 = 3�1, P = 0�002).
Within the host community, the temporal variation in

centrality was unequal between TI and TP species (model

pair 7, Table 1). The model showed that across years, the

Table 2. Estimation of coefficients (� SE) of asymmetry (Ai) and rescaled betweenness centrality (BC) by a mixed-effects generalized

least-squares model with year as a random factor and heterogeneous variance component, allowing each host species to have a different

across-year variance. Only 11 host and 17 parasite species that occurred in the network for 6 years were included. The results correspond

to the heteroscedastic models of pairs 1–4 in Table 1

Species

Ai Rescaled BC

Coefficient (SE) t P Coefficient (SE) t P

Hosts

Apodemus agrarius 0�223 (0�033) 6�75 0 0�555 (0�11) 5�037 0

Arvicola terrestris 0�3 (0�033) 9�13 0 0�197 (0�072) 2�754 0�008
Myodes rufocanus �0�299 (0�139) �2�15 0�036 0�035 (0�018) 1�961 0�055
Myodes rutilus 0�186 (0�015) 12�40 0 0�572 (0�137) 4�176 0

Microtus agrestis 0 (0�094) 0�00 0�998 0�2 (0�084) 2�376 0�02
Microtus arvalis 0�044 (0�098) 0�45 0�656 0�103 (0�053) 1�968 0�055
Microtus gregalis 0�116 (0�202) 0�57 0�569 0�331 (0�152) 2�17 0�035
Microtus oeconomus 0�179 (0�033) 5�48 0 0�445 (0�15) 2�965 0�005
Sicista betulina �0�087 (0�062) �1�40 0�169 0�056 (0�033) 1�662 0�103
Sorex araneus 0�341 (0�04) 8�63 0 0�891 (0�067) 13�341 0

Sorex isodon �0�098 (0�062) �1�59 0�118 0�101 (0�048) 2�096 0�04
Parasites – fleas

Amalaraeus penicilliger �0�055 (0�013) �4�26 0 0�518 (0�074) 6�983 0

Ctenophthalmus assimilis �0�02 (0�029) �0�68 0�498 0�86 (0�078) 10�979 0

Hystrichopsylla talpae �0�064 (0�017) �3�83 0 0�347 (0�038) 9�196 0

Megabothris rectangulatus 0�008 (0�027) 0�30 0�766 0�536 (0�076) 7�061 0

Neopsylla acanthina �0�092 (0�023) �4�07 0 0�45 (0�119) 3�773 0

Palaeopsylla soricis �0�01 (0�035) �0�28 0�777 0�073 (0�06) 1�206 0�23
Parasites – mites

Eulaelaps stabularis �0�059 (0�013) �4�38 0 0�562 (0�073) 7�754 0

Haemogamasus ambulans �0�134 (0�025) �5�35 0 0�287 (0�047) 6�098 0

Hirstionyssus isabellinus �0�04 (0�031) �1�30 0�196 0�368 (0�117) 3�141 0�002
Hirstionyssus soricis �0�482 (0�101) �4�78 0 0�006 (0�005) 1�195 0�24
Laelaps muris �0�827 (0�043) �19�24 0 0 (0) 1�574 0�12
Laelaps pavlovskyi �0�87 (0�018) �49�56 0 0 (0) 1�579 0�12
Parasitus oudemansi �0�248 (0�05) �4�93 0 0�285 (0�044) 6�478 0

Parasitus remberti �0�584 (0�172) �3�40 0�001 0�226 (0�159) 1�42 0�16
Poecilochirus necrophori �0�074 (0�013) �5�85 0 0�457 (0�115) 3�98 0

Poecilochirus subterraneus �0�132 (0�097) �1�36 0�178 0�167 (0�059) 2�827 0�006
Proctolaelaps pygmaeus �0�436 (0�116) �3�76 0 0�234 (0�091) 2�587 0�011

Coefficients significantly different than zero are in boldface.
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species-average BC of TP hosts was significantly higher

than that of TI species (0�24 vs. 0�003, respectively;

t88 = �7�0, P < 0�0001). In addition, the coefficient esti-

mate for temporal variation in the BC of TI hosts was

0�003 times that of TP hosts, indicating that TI species

were invariably peripheral across years because a low var-

iance coefficient indicated a lack of temporal variation.

Within the parasite community, variation in centrality

was unequal between TI and TP species (model pair 8,

Table 1). The centrality of TP parasites was significantly

higher than that of TI parasites (0�21 vs. 0�03, respec-

tively; t248 = �7�9, P < 0�0001). The coefficient estimate

for the temporal variation in the centrality of TI parasites

was 0�29 times that of TP hosts. Although not to the

same extent as in hosts, this indicated that TI parasites

retain their peripheral role across years.

relationship between asymmetry and
centrality

There was a significant positive linear correlation between

Ai and BC for core hosts and parasites (r = 0�76 and

r = 0�69, respectively; P < 0�01 for both) (Fig. 2). It can

also be seen in Fig. 2 that, in general, hosts that exerted

more direct influence (higher values of Ai) had lower tem-

poral variation in Ai, but not necessarily low temporal

variation in BC. Similarly, parasite species that were less

prone to direct influence by hosts (Ai close to 0) had

lower temporal variation in Ai, but medium-to-high tem-

poral variation in BC.

Discussion

Earlier studies have focused on the temporal dynamics of

species/interaction turnover in mutualistic (Petanidou

et al. 2008; Alarcón, Waser & Ollerton 2008; Dupont

et al. 2009; Olesen, Stefanescu & Traveset 2011) or antag-

onistic (Laliberté & Tylianakis 2010) networks and in

food webs (Schoenly & Cohen 1991). In this study, we

take a step further and examine, for the first time, the

temporal dynamics of functional roles of species in an

antagonistic network by directly examining the temporal

variation component. It should be noted, though, that

our analysis has three main limitations. First, the negative

relationship between parasite abundance and host fitness

may not be linear, so that a parasite with a low value of

asymmetry could have a major effect on its host. For

example, parasitism may cause energy loss in a host due

to mounting of an immune response (Lochmiller &

Deerenberg 2000). Yet, due to the complexity and multi-

ple interactions involved in asymmetry, we cannot predict

the exact effects of a nonlinear relationship on values of

asymmetry or BC. Second, the effect of parasites on host

fitness was quantified for a few host–parasite associations

only (e.g. Arnold & Anja 1993; Neuhaus 2003), while for

the majority of parasites the magnitude of the effect is

unknown. We thus assumed that parasites were similar in

their negative effects on hosts. Third, we used host species

for which at least 10 individuals were captured. This

threshold increased the robustness of the analysis but we

may have omitted some rare host species. However, rare

species are usually intermittent, and thus, we believe that

the omission of few rare species would not have

qualitatively affected the results. Nonetheless, as we dis-

cuss below, if the effects of intermittent species are nonlin-

ear, then rare species may have a disproportional

influence, which we may have missed. Despite these limi-

tations, this study provides first and valuable insights into

the temporal dynamics of the functional roles hosts and

parasites play in the system, which has not been studied
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so far. Below, we discuss our results according to the

hypotheses we posed and then discuss further conse-

quences of our findings.

temporal dynamics of core species

The network dynamics resulted in strong among-species

heterogeneity in the temporal variation in asymmetry and

centrality. Therefore, our hypothesis that temporal vari-

ability in direct and indirect influences would differ across

species within a community (H1) is not rejected. However,

it requires explaining why temporal variation in asymme-

try and/or centrality is high in some of the core species,

but low in others.

Temporal variation in asymmetry is affected by both

evolutionary and ecological processes (Carnicer, Jordano

& Melián 2009). Heterogeneity in asymmetry may stem

from among-species differences in some traits. For

instance, some host species may be characterized by large

yearly fluctuations in abundance, resulting in fluctuations

in the resources provided to parasites exploiting them,

here observed as high temporal variation in asymmetry,

while the abundance of other host species remains tempo-

rally stable (Bjornstad, Falck & Stenseth 1995). Within

host species, traits that affect parasite abundance (e.g.

immunocompetence, body mass) or a parasite species’

ability to infest a host (e.g. host detection ability) are not

expected to vary greatly across years (Arneberg, Skorping

& Read 1997; Krasnov et al. 2006), and thus, intraspecific

temporal variation in asymmetry is not expected to be

high. This is supported by generally low within-species

temporal variation in asymmetry, with only a few species

having high temporal variation. Environmental stochastic-

ity may explain at least part of the high interspecific tem-

poral variation. For example, unusually cold weather can

delay the development of only a subset of ectoparasite

species that are highly sensitive to climatic fluctuations

(Krasnov et al. 2001). Climatic fluctuations have also

been suggested to affect temporal variation in the struc-

ture of a mutualistic network (Alarcón, Waser & Ollerton

2008). Parasite abundance has been shown to be a true

species-related trait in the sense that it varies within host

species in rather narrow boundaries (Krasnov et al. 2006).

Because here asymmetry is based on mean parasite abun-

dance values, we suggest that highly influential host spe-

cies may be those which are consistently more parasitized

than others.

In contrast to asymmetry, centrality is strongly affected

by the availability of other species in the system, and

thus, the yearly species/interaction turnover resulted in

high temporal variation in centrality both within and

across species. Some host–parasite associations are char-

acterized by cyclic fluctuations in the abundances of the

host and, with a certain lag, parasite species (Hudson,

Dobson & Newborn 1998). Based on our results, we sug-

gest that temporal variability in species centrality may be

correlated with cyclic changes in abundance. When host

abundance is at its peak, host individuals are more likely

to be parasitized, in addition to their typical parasites, by

parasite species that are less specific to the host because

the probability of host-to-host transfer increases with host

abundance (Krasnov, Khokhlova & Shenbrot 2002). This

will increase the probability that the host species will

share parasites with other hosts, translated to high cen-

trality of the host species. When host abundance is low, it

will be parasitized mainly by a group of parasites more

specific to it, lowering the probability of sharing parasites

with other host species, making it less central. From a

parasite species’ perspective, an increase in its preferred

host abundance will increase its own abundance (Arne-

berg et al. 1998), thus making it more central as it will

also infest host species other than its preferred one. When

the abundance of the parasite is low, it will be less central

as it will be mostly restrained to its preferred host. This

process may occur in our system as fleas are opportunistic

parasites, which are usually specific to a main host but

can also switch to a less preferred one (Krasnov 2008).

dynamics of temporally persistent and
intermittent species

Temporally persistent hosts promoted parasite transmis-

sion across the network and TP parasites facilitated para-

site transmission, but the extent of their influence varied

among years. In contrast, TI hosts and parasites were

invariably peripheral across years. Therefore, we do not

reject our hypothesis H2 and our results suggest that TP

hosts are the ones that drive the system as none of the TP

parasites were influential. However, these seemingly ‘weak

effects’ of TI species should not be underestimated

(Berlow 1999). TI hosts may act as latent reservoirs of

opportunistic but strongly influencing parasites that may

be transferred to other hosts via a central TP host in a

certain year – a transmission pattern similar to disease

outbreaks (Paull et al. 2012).

across-species correlation between direct
and indirect influence

The positive correlation between asymmetry and centrality

indicates that hosts that exert strong positive influence on

parasites (relative to the weak negative effect parasites

exert on them) also exert strong indirect influence on

other hosts, probably by facilitating parasite transmission.

Similarly, parasites that exert strong negative direct influ-

ence on hosts (relative to the weak positive effect hosts

exert on them) also exert strong indirect influence on

other parasites, probably by facilitating host exploitation

by multiple parasites (Krasnov et al. 2005). These patterns

support our initial hypotheses.

Despite a positive correlation between asymmetry and

centrality, there was much variation in centrality in para-

sites with asymmetry values close to zero. Therefore, the

direct effect of a parasite on its host is not necessarily
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related to its functional role in facilitating infestation of

hosts by other parasites. Five hosts (A. agrarius, M. ruti-

lus, M. oeconomus, S. araneus and, to a lesser extent,

Arvicola terrestris) were, on average, more exploited by

ectoparasites (high asymmetry) and propagated transmis-

sion (high centrality), whereas others played a less impor-

tant role. Vázquez et al. (2007) found a significant

correlation between species abundance and asymmetry,

whereby more influential species should be the most abun-

dant ones. This hypothesis should be examined using esti-

mates of abundance independent of those used for

network construction, but a preliminary analysis based on

our abundance data only partially supported it (Fig. S7,

Supporting information). Therefore, observed patterns in

interaction asymmetry cannot be explained by host abun-

dance alone, as also noted by Vázquez et al. (2007).

consequences of temporal dynamics

Taken together, our results point to a core of TP hosts

and parasites that drive the system, in terms of parasite

propagation and infestation facilitation, with TI peripheral

species playing a minor role. However, even within the

group of core species, some species exhibit large temporal

variation, such that the functional roles they play change

over time despite their temporal persistence. Temporal

variation in a functional role is a consequence of changes

in interactions, which can be caused by either species turn-

over or rewiring (change in interactions among occurring

species). Among the core species, variation in a functional

role is the result of rewiring because there is no species

turnover. The ability to rewire interactions increases over-

all network stability (Ramos-Jiliberto et al. 2012). Fur-

thermore, it ensures that parasites will always be

transmitted across hosts because, when a host is less cen-

tral in a certain year, there is a substantial likelihood that

another host will take its place. This results in a resilient

network which is also temporally stable in its global prop-

erties, as suggested by the observed network connectance

and as has been shown in mutualistic networks (Petanidou

et al. 2008; Olesen, Stefanescu & Traveset 2011).

Finally, understanding the dynamics of species’ func-

tional roles is important from a disease ecology perspec-

tive. In our model of small mammals and fleas, the

temporal variation we find can have consequences for the

transmission dynamics of vector-borne pathogens and

eventually for the risk of zoonotic vector-borne diseases,

such as plague (Girard et al. 2004). Further exploring the

temporal variation in species roles in antagonistic

networks using additional species roles will provide

important insights that may be later applied for selection

of the most appropriate target hosts for control.
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Additional Supporting Information may be found in the online version
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Appendix S1. Yearly species accumulation curves.

Appendix S2. R code for analyses.

Fig. S1. Histograms showing (a) number of species (hosts – blue;

parasites – orange) in the network for a certain number of years

(persistence) and (b) frequency of links in the network for a cer-

tain number of years.

Fig. S2. Yearly (1982–1987) bipartite host–parasite interaction

networks. For each network, parasite and host species are repre-

sented as boxes at the top and at the bottom, respectively, and

the thickness of the links is proportional to the mean number of

parasites found on individual hosts. Numbers are species IDs

from Table S1.

Fig. S3. Asymmetry index (Ai) calculated directly from the net-

work data for the 11 host species that occurred in the network

for 6 years. Dashed blue line is fixed at zero and represents a lack

of asymmetry in direct influence.

Fig. S4. Asymmetry index (Ai) calculated directly from the net-

work data for the 17 parasite species that occurred in the net-

work for 6 years. Dashed blue line is fixed at zero and represents

a lack of asymmetry in direct influence.

Fig. S5. Values of rescaled betweenness centrality calculated

directly from the network data for 11 host species that occurred

in the network for 6 years.

Fig. S6. Values of rescaled betweenness centrality calculated

directly from the network data for 17 parasite species that

occurred in the network for 6 years.

Fig. S7. Within-year Spearman correlation between total abun-

dance (total number of individuals collected per species) and

asymmetry index of host species. Significance values are written

within each panel.

Table S1. Summary of species occurrence in the yearly networks.
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