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Summary

1. Understanding the structure of ecological networks is a crucial task for interpreting community

and ecosystem responses to global change.

2. Despite the recent interest in this subject, almost all studies have focused exclusively on one

specific network property. The question remains as to what extent different network properties

are related and how understanding this relationship can advance our comprehension of the

mechanisms behind these patterns.

3. Here, we analysed the relationship between nestedness and modularity, two frequently studied

network properties, for a large data set of 95 ecological communities including both plant–animal

mutualistic and host–parasite networks.

4. We found that the correlation between nestedness and modularity for a population of random

matrices generated from the real communities decreases significantly in magnitude and sign with

increasing connectance independent of the network type. At low connectivities, networks that are

highly nested also tend to be highly modular; the reverse happens at high connectivities.

5. The above result is qualitatively robust when different null models are used to infer network

structure, but, at a finer scale, quantitative differences exist. We observed an important interaction

between the network structure pattern and the null model used to detect it.

6. A better understanding of the relationship between nestedness and modularity is important

given their potential implications on the dynamics and stability of ecological communities.

Key-words: complex networks, food webs, host–parasite, mutualistic networks, plant–

pollinator, plant–seed disperser

Introduction

The architecture of complex networks of species interactions,

such as predation, parasitism and mutualism, plays an

important role in the persistence and stability of species-rich

communities (Krause et al. 2003; Teng & McCann 2004;

Fortuna & Bascompte 2006; Bascompte, Jordano & Olesen

2006; Rooney et al. 2006; Bastolla et al. 2009). Hence, under-

standing network structure and its underlying mechanisms is

a crucial task for interpreting community and ecosystem

responses to global change (Tylianakis et al. 2008).

One well-studied type of ecological network is that of

mutual dependences between plants and their pollinators or

seed dispersers. It is well established that interactions in these

mutualistic networks are heterogeneously distributed among

species. That is, the bulk of species have a few interactions,

but a few species are much more connected than expected by

chance (Jordano, Bascompte & Olesen 2003). This heteroge-

neity describes a species-level property. If we look at the iden-

tity of who interacts with whom at a community-wide level,

these networks tend to show a significantly nested pattern

wherein specialists interact with proper subsets of the species

interacting with generalists (Bascompte et al. 2003). These

patterns have also been found in host–parasite networks

(Vázquez et al. 2005). More recently, a significantly modular

pattern characterized by the existence of densely connected,

non-overlapping subsets of species – called modules – has

also been identified. In this case, modules are composed of*Correspondence author. E-mail: fortuna@ebd.csic.es
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species having many interactions among themselves as well

as very few with species in other modules (Jordano 1987;

Dicks, Corbet & Pywell 2002; Olesen et al. 2007; Dupont &

Olesen 2009).

The dynamical implications of one of the two community-

level patterns, nestedness, have begun to be explored. Recent

theoretical studies have shown that a nested structure mini-

mizes competition and increases the number of coexisting

species (Bastolla et al. 2009), and also makes the community

more robust to both random extinctions (Memmott, Waser

& Price 2004; Burgos et al. 2007) and habitat loss (Fortuna &

Bascompte 2006). On the other hand, there are fewer studies

which investigate the dynamical consequences of the modu-

lar structure for mutualistic networks. Nevertheless, since the

seminal work of May (1972), it has been considered that

modular or compartmentalized patterns described in food

webs increase network stability, retaining the impacts of a

perturbation within a single module and minimizing impacts

on other modules (Krause et al. 2003; Teng&McCann 2004;

see, however, Pimm 1979).

In spite of the relevance of nestedness and modularity for

the stability and persistence of communities, the relationship

between these structural patterns remains unknown (see

Fig. 1). Only Olesen et al. (2007) explored both nestedness

and modularity and found coexistence of these patterns in

some pollination networks (see also Ramos-Jiliberto et al.

2009; Valdovinos et al. 2009).However, these authors looked

at these two network patterns independently using different

null models. Recent warnings suggest that network patterns

should be addressed jointly instead of addressing one net-

work pattern at a time (Lewinsohn et al. 2006). Similarly,

understanding the relationship between several network pat-

terns will help us to accurately determine the relevant and

redundant aspects of network structure (Vermaat, Dunne &

Gilbert 2009).

In order to better understand the relationship between the

two network properties, we have explored nestedness and

modularity for a large collection of mutualistic and host–

parasite networks using a rigorous comparative framework.

Materials andmethods

DATA SET

We have compiled a set of 95 ecological communities of mutualistic

(34 plant–pollinator and 22 plant–seed disperser) and antagonistic

(39 host–parasite) interactions (see Appendix S1 in Supporting Infor-

mation). Each of these communities can be represented as a bipartite

network where interactions are established between species that

belong to two different sets (e.g. between plant and animal or host

and parasite) but not between species of the same set. Using this data

set, we have calculated two community-level structural properties:

nestedness andmodularity.

NESTEDNESS

We have estimated an index of nestedness (N) by using the Aninhado

software (Guimarães & Guimarães 2006), a modified version of the

Nestedness Calculator software (Atmar & Patterson 1993). Each net-

work is represented as a matrix with species from one set as rows and

species from the other one as columns. Each element of the matrix is

1 if that particular plant (or host) interacts with that particular ani-

mal (or parasite) and 0 otherwise. The algorithm arranges the pres-

ence/absence matrix in order to minimize the absences to the left and

the presences to the right of an isocline of perfect nestedness (see Fig.

1a,c). For each unexpected presence or absence, a normalized mea-

sure of global distance to the isocline is calculated, and these values

are averaged. By using an analogy with physical disorder, this mea-

sure is called temperature (T) with values ranging from 0 to 100

(Atmar & Patterson 1993; Guimarães & Guimarães 2006). Because

in this paper we emphasize nestedness, or order, instead of disorder,

we define the level of nestedness, N, as N¼(100)T)/100, with values

ranging from 0 to 1 (maximum nestedness; for more details, see

Bascompte et al. 2003).

Recent comparative studies have examined in detail the appropri-

ateness of different metrics for estimating nestedness, including the

nestedness temperature used here (Ulrich, Almeida-Neto & Gotelli
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Fig. 1. Matrix representations of a bipartite network. (a) Nested

matrix. (b) Modular matrix. (c) Nested and modular matrix. Each

black square indicates an interaction between the species in the

respective row and column. All networks have the same number of

species (20) and the same number of interactions (25). The solid line

represents the isocline of perfect nestedness.
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2009). In order to explore the sensitivity of our results to the metric

used, we have also calculated nestedness by using the analytical mea-

sure introduced by Bastolla et al. (2009). This measure is very similar

to the one introduced by Almeida-Neto et al. (2008) and studied in

detail byUlrich et al. (2009).

MODULARITY

There are several algorithms to detect modular structures in networks

(see Newman & Girvan 2004; Guimerà & Amaral 2005a,b; Rosvall

& Bergstrom 2007). Here, we use a module-finding algorithm

(Newman&Girvan 2004) combined with a simulated annealing opti-

mization approach (Guimerà & Amaral 2005a,b) to detect modules.

The algorithm uses a heuristic procedure to find an optimal solution

for the maximization of a function called modularity (Newman &

Girvan 2004). Although modularity optimization has a resolution

limit which makes its application risky on large networks (Fortunato

& Barthélemy 2007), we have used this method because we have not

included the largest available community data sets due to computa-

tional limitations for the null models used (see below). Although our

networks are bipartite (i.e. there are two groups of nodes with inter-

actions between but not within groups), we use a modularity algo-

rithm for unipartite networks. This algorithm defines groups of

plants and animals whose species are highly connected to each other,

rather than groups of plants and groups of animals created as a func-

tion of their shared interactions.

ModularityM is defined as

M ¼
XNM

s¼1

ls
L
� ds

2L

� �2
" #

; eqn 1

where NM is the number of modules, L is the number of links in the

network, ls is the number of links between nodes in module s and ds is

the sum of the number of links of the nodes in module s (Newman &

Girvan 2004). This function maximizes the number of links between

nodes belonging to the same module and minimizes the number of

links between nodes belonging to different modules. Because of its

heuristic nature, we have made 10 realizations of the algorithm for

each real community and report the maximum value of modularity

obtained.

NULL MODELS

Once we have estimated the values of nestedness and modularity for

a community, we want to know whether these values are significant

compared with a random expectation. Otherwise, the network struc-

ture detected could be just a consequence of the density of links or

connectance (i.e. the fraction of actual links in relation to the total

number of possible links). In the case of nestedness and modularity,

defining the random expectation is tantamount to deciding on the

appropriate null model.

Null models are pattern-generating models that deliberately

exclude a mechanism of interest and allow for randomization tests of

ecological and biogeographic data (Gotelli 2001). We have used two

null models as templates to statistically contrast the values of nested-

ness and modularity. Note that our null models maintain the bipar-

tite structure of the communities by not allowing connections

between plants and plants (hosts and hosts) and between animals and

animals (parasites and parasites). The first null model is probabilistic

(see Bascompte et al. 2003; we will subsequently refer to it solely as

the probabilistic model). This model probabilistically maintains the

observed total number of interactions and approximately maintains

the number of interactions, or degree, per species. The probability of

drawing an interaction between any given plant (host) and animal

(parasite) is the arithmetic mean of the interaction probability of the

plant and the animal. Thus, the probability of drawing an interaction

is proportional to the degree of both the plant and the animal. This

null model was used to detect significance of nestedness in Olesen

et al. (2007).

The second null model is a fixed null model (Gale 1957; Connor &

Simberloff 1979; Gotelli 2000; we will subsequently refer to it solely

as the fixed model). This null model maintains exactly the same num-

ber of interactions per species. There are two general strategies for

obtaining random matrices keeping the number of interactions per

species the same as in the real one: ‘swap’ algorithms and ‘fill’ algo-

rithms. Although there is still some controversy regarding the suit-

ability of the two procedures (Manly & Sanderson 2002; Gotelli &

Entsminger 2003), it has been noted that they generate very similar

results (Gotelli & Entsminger 2001).

In the swap algorithm, the original matrix is reshuffled by repeat-

edly swapping 2·2 submatrices that preserve the row and column

totals (for an independent swap algorithm, see Roberts & Stone 1990

and for a sequential swap algorithm, see Manly 1995). Transposi-

tions are created by randomly selecting a pair of rows and a pair of

columns in the matrix, then the four cells are swapped if possible. If a

swap is not possible, another pair of random rows and columns is

selected. A modified version of the independent swap algorithm – the

trial swap – can reduce the potential problem of exploring a biased

subset of the null space and then increase the significance of a non-

random pattern (Miklós & Podani 2004; Joppa et al. 2009). How-

ever, as our goal is not so much to detect the level of significance of a

single network pattern but to compare two patterns of network orga-

nization, here we have used the independent swap algorithm by per-

forming 10 000 random transpositions for the creation of each

random matrix (Itzkovitz et al. 2004). It is worth noting that the

independent swap null model was utilized by Guimerà & Amaral

(2005a,b) and subsequently by Olesen et al. (2007) to detect the sig-

nificance of modularity.

Which null model should be used is a fascinating challenge, and

each should be assessed in relation to the trade-off between the type I

and type II errors they convey (Sanderson, Moulton & Selfridge

1998; Gotelli 2000, 2001; Gotelli & Entsminger 2001, 2003; Manly &

Sanderson 2002; Ulrich & Gotelli 2007). When detecting nestedness,

probabilistic null models tend to have a high type I error (falsely

rejecting the null hypothesis), while our fixed null model has previ-

ously been shown to exhibit a high type II error, i.e. incorrectly

accepting the null hypothesis when it is wrong (Ulrich & Gotelli

2007). At any rate, using a null model that preserves both the number

of ones in rows and columns presents important challenges in terms

of uniformly sampling all null space, having sufficient degrees of free-

dom and implementation time. For reasons such as these, there has

been a preference for the probabilistic model; this version has also

been shown to have the smallest type I error compared with other

probabilistic null models (Rodrı́guez-Gironés & Santamarı́a 2006).

We have generated an ensemble of 100 random matrices for each

community with the probabilistic model and another ensemble of

100 matrices with the fixed model. Note that the probabilistic model

can yield degenerate matrices, i.e. matrices with fewer species than

the real communities because some species are not assigned any inter-

actions. Although avoidance of such degenerate matrices is a matter

of discussion (Gotelli 2000), we eliminate them here in order to avoid

potential influences of the number of species on our analysis. In the

population of 100 randomizations, therefore, all matrices have the

same number of species. For each randommatrix, we have calculated

Nestedness versus modularity 813
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the values of nestedness and modularity to which we compare the

values for the real communities.

DIFFERENCES IN DEGREE DISTRIBUTION

As noted above, the probabilistic model only approximately main-

tains the degree per species. In fact, the probabilistic model tends to

make specialist species less specialist and generalist ones less general-

ist (Bascompte et al. 2003). This makes the degree distribution of the

resulting randommatrices less heterogeneous. To quantify this effect,

we calculate the agreement between the degree distribution of net-

works generated by the probabilistic model and that of the real com-

munities in the following fashion. First, we measure the area A

between the real cumulative distribution function P(k) and the model

cumulative distribution functionPM(k):

A ¼
Z
jPðkÞ � PMðkÞjdk; eqn 2

where k is the degree. Second, we calculate the normalized area
~A ¼A=K where K is the two distributions’ observed support (i.e.

the difference between the maximum andminimum values observed).

Note that the normalization implies that values of ~A fall within the

bounds [0, 1]. As the fixed model maintains the empirical degree dis-

tribution, ~A ¼ 0 for all networks generated by this model.

Results

We found that there is a significant correlation between nest-

edness and modularity for plant–pollinator communities (r¼
0Æ363, P¼0Æ035) but not for plant–seed disperser (r¼0Æ151,

P¼0Æ503) and host–parasite (r¼)0Æ066, P¼0Æ689) networks.
However, we note that real communities differ among them-

selves with regard to both the number of species and of inter-

actions which presents a possible confounding effect. By

narrowing our focus on the values of nestedness and modu-

larity calculated for the population of random matrices gen-

erated by the two null models, we were able to eliminate this

confounding effect.

Using a population of randomizations for each real matrix

and calculating the correlation between the two structural

properties in each of these populations of randomizations, we

observed that there is a change in the sign of the correlation

between nestedness and modularity as a function of the con-

nectance (see Fig. 2). For communities with low connectances,

the higher the nestedness, the higher the modularity. By con-

trast, the higher the nestedness, the lower the modularity for

communities with high connectances. Thus, an increase in the

number of interactions for a fixed number of species reduces

the possibility that the interaction matrix would be both

nested and modular. This implies that only communities with

low connectances are likely to simultaneously present nested

andmodular patterns. This confirms but constrains the results

of Olesen et al. (2007) for pollination networks.

The above general result is modulated quantitatively by

the type of community (seed dispersal, pollination and host–

parasite) and the type of null model used to infer statistical

significance. Specifically, at a finer scale, the correlation co-

efficient between nestedness and modularity decreases
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significantly with network connectance (Fig. 2) for seed dis-

persal and host–parasite communities (r¼)0Æ801, P<0Æ001;
r¼)0Æ625, P<0Æ001 for the fixed model and r¼)0Æ710,
P<0Æ001; r¼)0Æ768, P<0Æ001 for the probabilistic one). For
pollination communities, this relationship is significant only

for matrices created with the probabilistic model (r¼)0Æ718,
P<0Æ001). Therefore, there is also a change in the magnitude

of this relationship depending on the null model used for cre-

ating the random matrices. The probabilistic model exhibits

a smaller range of coexistence for the two structural patterns.

Additionally, the negative correlation between nestedness

and modularity is observed at smaller values of connectance

for the probabilistic model than for the fixed model (see

Fig. 2).

The differences between null models also affect the detec-

tion of the nested and modular patterns in real communities.

When compared to the probabilistic model, 77%, 88% and

69% of seed dispersal, pollination and host–parasite commu-

nities are significantly nested, respectively, compared to just

0%, 15% and 0%, when compared to the fixed model (see

Appendix S1). When examining modularity, 9%, 29% and

38% of seed dispersal, pollination and host–parasite commu-

nities, respectively, are significantly modular when compared

to the probabilistic model, in contrast to 23%, 59% and 67%

when compared to the fixed model respectively. The results

for nestedness do not change qualitatively when using the

analytical measure (Bastolla et al. 2009). The primary differ-

ence is that when compared to the probabilistic model, the

analytical measure less frequently indicates significant nest-

edness. Importantly, there is a significant positive correlation

between the tendency to detect significant nestedness, as mea-

sured by the z-score, for the metric based on nestedness tem-

perature and the analytic measure for the two null models

(r¼0Æ930,P<0Æ001 and r¼0Æ747,P<0Æ001 respectively).
It is worth noting that the five communities which are

significantly nested according to the fixed model are also

significantly modular according to that model and signifi-

cantly nested when compared to the probabilistic model. In

the same way, 23 of the 27 significantly modular communi-

ties according to the probabilistic model are also signifi-

cantly nested according to that model and significantly

modular according to the fixed model. This implies that

both null models are very conservative for the specific pat-

terns they tend to detect as significant. That is, if a commu-

nity is nested according to the fixed model, that community

should also be nested compared to the probabilistic model.

Similarly, if a community is modular according to the prob-

abilistic model, that community should also be modular

when compared to the fixed model because the probabilistic

model is more conservative in detection of significant modu-

larity. It appears that there is strong interplay between the

structural patterns of the networks and the null models

which detect them. This result builds on the interaction

between null model and index of nestedness found by Ulrich

& Gotelli (2007).

One factor which helps explain why the probabilistic

model tends to detect nestedness more frequently than the

fixed one is that the fixed null model exhibits high type II

error when detecting nestedness, i.e. it incorrectly accepts the

null hypothesis more frequently (Ulrich & Gotelli 2007). As

noted above, the trial swap reduces the type II error through

an improvement of the sampling of the parameter space

(Miklós & Podani 2004). Accordingly, Joppa et al. (2010)

have found that the fraction of mutualistic communities sig-

nificantly nested increases to about one of three when using a

version of the trial swap and the nestedness temperature used

here. This, however, is not incompatible with contributions

from additional factors. Among others, there could be corre-

lations between nestedness and degree distribution (see

Medan et al. 2007).

In 52% of the communities, there is a significant difference

(P<0Æ001) in the degree distribution of both plants (hosts)

and animals (parasites) in at least 50% of the random matri-

ces. This fraction increases to 94% if we allow that only one

of the two degree distributions needs to be significantly differ-

ent. The correlation between these differences and the differ-

ences in nestedness values predicted by the two null models is

also significant (r¼0Æ521, P<0Æ001, see Fig. 3). Greater dif-

ferences in the degree distribution are strongly associated

with greater differences in nestedness. Hence, the less hetero-

geneous the degree distribution, the lower is the nestedness

value for matrices generated by the probabilistic model.

These differences in the degree distribution are not

significantly correlated with network connectance (r¼0Æ080,
P¼0Æ442), which is consistent with the fact that this null

model probabilistically maintains the overall number of

interactions. Therefore, it seems that the probabilistic

model increases the chance to detect significantly nested
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communities because it directly reduces the heterogeneity of

the degree distribution. This implies type I errors and further

explains the differences in nestedness detection between the

two null models.

Discussion

Our current study methodologically improves that of Olesen

et al. (2007) in at least two ways. First, the randomization in

the test for modularity preserves the bipartite character of

these networks (plants can interact only with animals). Sec-

ond, the randomization uses exactly the same null model for

checking the significance of both nestedness and modularity.

More importantly, from a conceptual point of view, our cur-

rent study explores the correlation between these two net-

work patterns; specifically, we address how such a

correlation is mediated by network connectance and by the

interaction between the network pattern and the null model

used to detect it. Despite these differences, our extended and

improved exploration confirms the results by Olesen et al.

(2007) as at least 15% of the communities are significantly

nested and modular for both null models, all of them plant–

pollinator networks.

Both nestedness (Bastolla et al. 2009) and modularity

(May 1972; Teng & McCann 2004) are thought to provide

benefits for ecological communities. In the context of our

study, the intricate relationship between nestedness andmod-

ularity has clear potential to temper or augment the different

implications of the two patterns. Consequently, as previously

suggested by Lewinsohn et al. (2006), simultaneously look-

ing at several network patterns can substantially advance our

understanding of the architecture of ecological networks.

Recently, Vermaat et al. (2009) analysed the covariance

among structural properties of food webs. They observed

that 20 distinct properties could largely be captured in three

major dimensions related to connectance, species richness

and net primary productivity respectively. By contrast, we

find here that nestedness and modularity do not appear to

provide overlapping or redundant information; in fact, the

relationship between these two properties and connectance

implies the existence of trade-offs in how densely connected

communities can fruitfully organize their connections.

It will be interesting to see how an additional property of

host–parasite interactions – intervality – fits into the picture

we provide here (Mouillot, Krasnov & Poulin 2008). This

could contribute to the fact that a large fraction of host–para-

site networks are significantly modular when comparing with

the two null models. Hence, it appears that antagonistic inter-

actionsmay tend to be organized in compartments evenwhen

they are densely connected.

Apart from this fact, onemight have expected larger differ-

ences between the different types of networks in our analysis,

in particular as the interactions in some are mutualistic, while

in the others they are antagonistic. However, we do not find

qualitative differences in how the correlation between nested-

ness and modularity changes with network connectance

which appear to arise as a consequence of network type. Nev-

ertheless, we observe here that the most highly connected

communities tend to exhibit only one of these two properties.

One potential explanation of this fact is simply that it is

exceedingly difficult to organize a large number of interac-

tions. By contrast, it is possible that early on in its assembly,

a simple fluctuation makes a community tend toward one

pattern over the other and it continues along the same path.

Another exciting alternative is that communities dynamically

rearrange their interactions, via successful and unsuccessful

introductions, speciations, or via extinctions, in one form or

the other due to locally relevant features which are not

accounted for in our meta-analysis. In either case, the funda-

mental question of why some communities are more densely

connected than others also remains to be fully explained.
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