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Coevolution—reciprocal evolutionary change among interacting species driven by natural selection—is thought to be an important

force in shaping biodiversity. This ongoing process takes place within tangled networks of species interactions. In microbial

communities, evolutionary change between hosts and parasites occurs at the same time scale as ecological change. Yet, we still

lack experimental evidence of the role of coevolution in driving changes in the structure of such species interaction networks. Filling

this gap is important because network structure influences community persistence through indirect effects. Here, we quantified

experimentally to what extent coevolutionary dynamics lead to contrasting patterns in the architecture of bacteria–phage infection

networks. Specifically, we look at the tendency of these networks to be organized in a nested pattern by which the more specialist

phages tend to infect only a proper subset of those bacteria infected by the most generalist phages. We found that interactions

between coevolving bacteria and phages become less nested over time under fluctuating dynamics, and more nested under arms

race dynamics. Moreover, when coevolution results in high average infectivity, phages and bacteria differ more from each other

over time under arms race dynamics than under fluctuating dynamics. The tradeoff between the fitness benefits of evolving

resistance/infectivity traits and the costs of maintaining them might explain these differences in network structure. Our study

shows that the interaction pattern between bacteria and phages at the community level depends on the way coevolution unfolds.
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The ecological importance of coevolution (i.e., reciprocal evo-

lutionary change between interacting species driven by natural

selection; Thompson 2005) relies on the ways coevolutionary

dynamics shape the structure of biodiversity. For example, pre-

vious theoretical studies have suggested that coevolution within

mutualistic communities can drive changes in trait distributions

and hence, might shape the patterns of interdependencies among

species (Nuismer et al. 2013; Guimarães et al. 2017). Yet, none of

the current ecological models of antagonistic interactions can be

used directly to evaluate the effects of coevolutionary dynamics

on the structure of phenotypic diversification (see however

Hochberg and van Baalen 1998). Building a strong theory of the

ecological consequences of coevolutionary dynamics requires

the design of experimental systems that provide insights and

guide the development of theoretical approaches.

The life cycles and antagonistic interactions of bacteria and

lytic phages make microbial communities a powerful model sys-

tem to explore the role of coevolution in shaping ecological

patterns because changes in gene frequencies take place at the

same time scale as changes in population abundances (Bohannan
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and Lenski 2000; Weitz et al. 2013; Betts et al. 2016). If changes

in gene frequencies translate into phenotypic trait changes that

affect demographic rates (such as reproduction or survival), then,

ultimately, the genetic change will affect population dynamics.

Phages infect their bacterial hosts by attaching to cell surface

receptors and one way for bacteria to evolve resistance is by

modifying or eliminating the attachment sites. The mutations re-

sponsible for these modifications may simultaneously reduce the

bacteria’s competitiveness because the receptor molecules are of-

ten involved in resource acquisition (Lenski 1988). Phages, in

turn, can evolve reciprocal adaptations to circumvent host resis-

tance (Meyer et al. 2012).

Cross-infection experiments across time (i.e., time-shift as-

says) were initially applied by Buckling and Rainey (2002) to

distinguish arms race dynamics (i.e., hosts become resistant to a

wider range of parasite genotypes and parasites evolve the ability

to infect a wider range of host genotypes across time) from fluctu-

ating dynamics (i.e., different, rather than greater, resistance and

infectivity profiles are alternatively favored through time). Under

fluctuating dynamics (also called Red Queen dynamics), natural

selection favors host genotypes that are rare if they can escape

attack by parasites that are locally adapted to the most common

host genotype (Ashby and Boots 2017, Best et al. 2017). At the

same time, selection will continue favoring parasites capable of

attacking the most common hosts. In contrast, arms race dynam-

ics are driven by directional selection toward an ever-increasing

investment in host defense and parasite counterdefense (Buckling

and Rainey 2002; Brockhurst et al. 2003; Scanlan et al. 2011).

Early theoretical (Hochberg and van Baalen 1998) and ex-

perimental (Lopez-Pascua et al. 2009) studies have suggested that

the level of resources available for hosts shapes the outcome of

coevolution. It has been suggested that the mechanism respon-

sible for the influence of resources on coevolutionary dynamics

is the cost of mutating receptors, with a lower cost when nutri-

ents are more abundant (Lopez-Pascua and Buckling 2008). What

remains to be investigated is to what extent differences in coevo-

lutionary dynamics lead to contrasting patterns in the structure of

bacteria–phage infection networks.

A bacteria–phage infection network depicts who infects

whom as links connect susceptible bacteria to the phages that

infect them (i.e., nodes of the network). The structure of such a

network is characterized by the pattern of links established among

all coevolving phages and bacteria that are present in the commu-

nity at a given time. Quantifying network structure in microbial

and viral communities is highly relevant because community

assembly models rarely account for the influence of evolutionary

change on ecological dynamics. For example, phages may infect

a single, unique bacterial phenotype or may diversify and result in

nested networks in which the most specialist phages infect those

hosts that are most susceptible to infection rather than infecting

those hosts that are most resistant to infection (see insets in

Fig. 3). This nested pattern was first described in the context of

plant–animal mutualistic networks (Bascompte et al. 2003), and

posteriorly applied to bacteria–phage infection networks (Flores

et al. 2011). The relevance of looking at this network pattern

hinges on the fact that it may affect both the number of coexisting

species supported by these networks (Bastolla et al. 2009) as well

as their robustness in the face of perturbation (Rohr et al. 2014).

In a first attempt to provide empirical evidence on how

the level of resources available for hosts influences network

structure by shifting coevolutionary dynamics, Poisot et al.

(2011) found that nestedness was greater at low than at high

resources. However, this study lacked competition among both

bacteria and phages because it was performed on a collection of

pairwise bacteria–phage coevolving populations. Only recently

this question has been addressed in experimental bacteria–phage

infection networks (Gurney et al. 2017). The authors used a

previous study (Betts et al. 2014) to test whether the networks

resulting from coevolving populations that exhibited arms race

dynamics were more nested than networks resulting from fluctu-

ating dynamics. No differences were found in terms of structure

between the networks resulting from the two modes of coevo-

lutionary dynamics. However, a limitation of their approach is

that they used phages from different families coevolving with the

same bacteria species. This precludes exploring how coevolution

shapes network structure within the same bacteria–phage system.

Here, we go further along this path in two novel directions.

First, we shift the focus from genotypic to phenotypic coevolu-

tion. Isolates sampled from the coevolving population at different

times might correspond to the same genotypes (likely the most

abundant ones). Because we are interested in phenotypic evolu-

tion, we circumvented this uncertainty by focusing on the unique

phenotypes for both bacteria and phages. This will allow us to

minimize the effects of differences in genotype abundance (i.e.,

the ecology of the system) and focus on the evolutionary dimen-

sion. Characterizing coevolutionary dynamics at the phenotype

level is important because abundance may explain asymmetries

in bacteria–phage interactions (i.e., phages of the abundant phe-

notypes will have frequent encounter with bacteria of many rare

phenotypes). Second, we quantify changes in the structure of the

interaction network at two levels. We begin by looking at the

contemporary interaction networks at each time step. This will al-

low us to explore to what extent the coevolutionary mode shapes

network structure. We then proceed by considering, for each repli-

cate, the global network of interactions accumulated across the

entire experimental setting, which will allow us to see to what

degree the phenotypes of the contemporary networks are more or

less similar across time. Hereafter, we will refer to the former

scale as the contemporary network and to the latter scale as

the global (contemporary plus noncontemporary) network. As
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a model system, we look at the structure of the network resulting

from the phenotypic diversification in a pairwise coevolution-

ary framework, where a single phage species (SBW25φ2) infects

one host bacterium species (Pseudomonas fluorescens SBW25)

in high and low nutrient environments (Lopez-Pascua et al. 2014).

Methods
COEVOLUTIONARY EXPERIMENTS

We used data from the coevolutionary experiment carried out by

Lopez-Pascua et al. (2014) using P. fluorescens SBW25 and phage

SBW25φ2. They cultivated 12 coevolving populations of bacteria

and their phages during 24 days in two different nutrient environ-

ments (six with high and six with low resource availability). The

high and low nutrient media contained the same nutrients (pro-

teose peptone and glycerol), but with 10-fold difference in con-

centration. The same receptors should therefore be expressed in

the bacteria. While we do not know the precise binding site of the

phage, characterization of resistant bacteria suggests phages bind

to lipopolysaccharides on the bacteria outer membrane (Scanlan

et al. 2015). Then, they isolated 20 bacteria and 20 phages every

4 days (i.e., six times for the entire coevolutionary process;

Fig. 1A). Using those isolates, the infectivity or resistance of

every pairwise bacterium–phage combination within each of the

12 populations was tested (i.e., (20 × 6) × (20 × 6) = 14, 400 in-

fectivity and resistance assays per population; Fig. 1B). Further

details on the evolution experiment, the procedure to isolate co-

evolved bacteria and phages, and how infectivity and resistance

assays were performed can be found in Lopez-Pascua et al. (2014).

PHENOTYPE-BASED BACTERIA–PHAGE INFECTION

NETWORKS

We first assigned, for each replicate and resource level, a

single phenotype to each of the 20 phages and 20 bacteria

isolated in the laboratory at each point in time by identify-

ing their unique infectivity (phages) or resistance (bacteria)

profiles. These profiles result from testing the outcome of the

(20 × 6) × (20 × 6) = 14, 400 pairwise cross-infections for each

replicate. That is, we assigned the same phenotype to two phages

(bacteria) if they showed the same infectivity (resistance) profile

against all bacteria (phages) isolated during the entire coevo-

lutionary process (Fig. 1C). This mapping of genotypes onto

phenotypes resulted in infectivity matrices between one-third

and a half the size of the 120 × 120 pairwise cross-infections

(mean and SD for the number of unique infectivity (resistance)

profiles of phages (bacteria) was 53.8 ± 35.8 (39.8 ± 24.7) at

low nutrients, and 63.2 ± 24.4 (36 ± 12.8) at high nutrients).

Second, for each replicate and resource level, we redrew the

20 × 20 infectivity matrices of bacteria and phages isolated at

time t by keeping only those bacteria and phages with unique

phenotypes (contemporary networks; Fig. 1D). Note that, if a

bacterium or phage with the same phenotype was sampled at

more than one point in time, the same phenotype will be found in

more than one contemporary network. In addition, some bacteria

and/or phages from a contemporary network might not have any

interactions just because of the sampling process. This does not

mean those bacteria had evolved resistance to all phages, but only

to the phages isolated at time t . Likewise, those phages might

not be able to infect any of the bacteria isolated at time t , but

they would be able to infect other bacteria in the population—

otherwise they would not have been sampled. We included those

phenotypes in the analyses of the contemporary networks because

they affect the average infectivity of the coevolving population.

Third, we redrew the infectivity matrices consisting of all

pairwise cross-infections for each replicate and resource level

(i.e., global networks; Fig. 1D) by considering those bacteria and

phages of their corresponding contemporary networks. As noted

above, a global network might contain more than one bacterium

and/or phage with the same phenotype if they were sampled at

more than one point in time. We included them in our analy-

ses to infer coevolutionary dynamics (see below), but kept only

the isolate that was sampled first as the unique phenotype in the

other analyses. This ensured that we matched the unique pheno-

typic characterization to the temporal sequence of the coevolu-

tionary process.

Finally, to infer coevolutionary dynamics at the phenotype

level (Fig. 2), the pairwise interactions (i.e., phage phenotype i

infecting bacterium phenotype j) from each global network were

classified into three groups: (1) interactions among contempo-

rary bacteria and their coevolving phages (i.e., phage phenotype

i sampled at time t was able to infect bacterium phenotype j

sampled at time t); (2) interactions among phages sampled from

future points in time and bacteria sampled from past points in time

(e.g., phage phenotype i sampled at time t + 1 was able to infect

bacterium phenotype j sampled at time t); and (3) interactions

among phages sampled from past points in time and bacteria sam-

pled from future points in time (e.g., phage phenotype i sampled

at time t − 1 was able to infect bacterium phenotype j sampled

at time t). Since the same phenotype can be sampled at more than

one point in time, we kept the first occurrence of the pairwise

interaction to ensure that each interaction was represented only

once in the data set.

STATISTICAL ANALYSIS

Phenotypic diversification and beta diversity
Phenotypic diversification was computed by counting the number

of novel infectivity and resistance profiles (phage and bacteria

phenotypes, respectively) identified at each point in time, repli-

cate, and resource level. We used a linear mixed model to test the

effect of resources on phenotypic diversification. We specified
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Figure 1. Experimental coevolution. (A) Coevolving bacteria and phages: 20 bacteria and 20 phages were isolated every 4 days from 12

populations that were coevolving for 24 days in two different nutrient environments (6 with high and 6 with low resource availability).

(B) Cross-infection matrices obtained at the end of the experiment: six 20×20 matrices of bacteria and phages isolated from the same

point in time are represented along the diagonal (black). Below the diagonal (red), pairwise cross-infections between bacteria isolated

at earlier points in time than phages are shown. Above the diagonal (green), pairwise cross-infections between bacteria isolated at later

points in time than phages are represented. In blue, a selection of four phage infectivity profiles are highlighted. (C) Infectivity profiles

(columns) of the 20 + 20 phages isolated at time t = 5 and t = 6 and obtained after crossing them with the 120 bacteria isolates (rows) are

represented (only the cross-infection patterns of four phage and 45 bacteria isolates are shown for illustrative purposes). The infectivity

profile of phage #20 isolated at time t = 5 and the infectivity profiles of phages #1, #2, and #3 isolated at time t = 6 are all the same. When

this happened, we only kept in the global networks the infectivity profile of the phage isolated at the earliest point in time, and discarded

the rest. Changes in the size of the matrices along the diagonal can happen as a result of this process. We applied the same procedure

to obtain unique bacteria resistance profiles (rows). (D) The resulting cross-infection matrix of unique infectivity/resistance profiles (i.e.,

phage/bacteria phenotypes) is shown. We use these cross-infection matrices in our analysis (i.e., we worked at the phenotype level).
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Figure 2. Coevolutionary dynamics. Phage infectivity (red) and bacterial resistance (i.e., 1-infectivity; blue) at the phenotype level

was computed for contemporary bacteria and phages (i.e., both were isolated for the first time at the same point in time), and when

bacteria (phages) were facing phages (bacteria) either from the past or the future through time-shifts experiments. Mean and confidence

intervals at 95% of infection and resistance probabilities are shown for low and high resources (for all replicates). Under low resources,

bacteria were more resistant to contemporary than to noncontemporary phages and phages were less virulent to contemporary than

to noncontemporary bacteria. This result is consistent with fluctuating dynamics when bacteria adapt more rapidly than do phages. In

contrast, at high resources bacteria (phages) were more resistant (virulent) to phages (bacteria) from the past than to contemporary

phages (bacteria), and to contemporary phages (bacteria) than to phages (bacteria) from the future. This result indicates an ever-increasing

reciprocal investment in defense and counterdefense over time (i.e., arms race dynamics).

resources, time, type of organism (either phage or bacterium),

and their interaction as fixed effects, and included replicate as a

random effect. We used the type I analysis of variance to quantify

the effects of the predictors (Kenward–Roger approximation).

Beta-diversity (i.e., changes in phenotypic composition over

time) was quantified following a method that allows us to decom-

pose the contribution of two additive components—phenotype re-

placement over time (i.e., turnover) and phenotype loss or gain—

to beta-diversity patterns (Baselga 2010). We used a linear model

to analyze the effect of resources, type of organism, and their

interaction on the total beta-diversity and on the fraction of the

total beta-diversity explained by phenotypic turnover.

Phage infectivity to evolving and coevolving bacteria
Interactions between unique phenotypes of bacteria and phages

were identified by pairwise cross-infection assays (i.e., phage

isolate having phenotype i infected bacterium isolate having

phenotype j in the cross-infection assay). Phage infectivity was

also computed separately for the three types of interactions:

interactions among coevolving bacteria and phages, interactions

among phages sampled from future points in time and bacteria

sampled from past points in time, and phages sampled from past

points in time and bacteria sampled from future points in time.

The role of resources in explaining the probability for a phage

to infect a coevolving bacterium compared to that of infecting a

bacterium either from the past or from the future was analyzed

using a generalized linear mixed model. We modeled the proba-

bility of infection with a binomial distribution (link function =
logit). We specified the statistical interaction between the type

of interaction and the resource level as fixed effects, and we in-

cluded replicate as a random effect. We used the type I analysis of

variance to quantify the effects of the predictors (Kenward–Roger

approximation). Here, by type of interaction we refer to the tempo-

ral dimension, that is, contemporary bacteria and phage, bacteria

from the future and phage from the past, and vice versa.

Nestedness
We computed nestedness in the pattern of interactions among

bacteria and phages for the global and contemporary networks.

We used a slightly modified version of the metric introduced by

Bastolla et al. (2009) that measures the average overlap betweeen

the infectivity (susceptibility) profiles of phages (bacteria). It is
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equivalent to the widely used NODF metric (Almeida-Neto et al.,

2008), but without penalizing the contribution to nestedness of

phages (bacteria) able to infect (susceptible to) the same number

of bacteria (phages). Specifically, nestedness was computed as:

N =
∑b

i=1,i< j
mi j

min(mi ,m j )
+ ∑p

i=1,i< j
ni j

min(ni ,n j )

b×(b−1)
2 + p×(p−1)

2

,

where b is the number of bacteria, p is the number of phages, mi

is the number of phages infecting bacterium i , ni is the number of

bacteria that phage i infects, mi j is the number of common phages

infecting bacteria i and j , and ni j is the number of common

bacteria that phages i and j infect. Nestedness defined above is

zero if mi j = 0 and ni j = 0 (i.e., no common interactions among

bacteria nor among phages), and one (i.e., perfect nestedness if

bacteria share all the phages they are susceptible to, and phages

share all the hosts they infect) if mi j = min(mi , m j ) and ni j =
min(ni , n j ).

The absolute values of nestedness resulting from this equa-

tion (as well as for the NODF metric) depend on network size (i.e.,

the number of phages multiplied by the number of bacteria) and

connectance (i.e., the number of realized interactions over the total

number of bacteria–phage pairs). That is, the smaller the number

of phenotypes and the larger the number of interactions, the higher

the chances for phage (bacteria) infectivity (resistance) profiles

to overlap (Almeida-Neto et al. 2008). In contrast to having a

single realization resulting from a given level of resources, here

we had enough data (i.e., six replicates) to explore the effect of

the resource level in determining changes in nestedness over time

after controlling for network size and connectance. Since 43% of

the contemporary networks were perfectly nested (i.e., N = 1),

we first tested the role of network size in explaining the preva-

lence of perfect nestedness by using a generalized linear mixed

model (binomial distribution; link function = logit). We specified

network size and the interaction between time and resources as

fixed effects, and included replicate as a random effect. Next, we

explored changes in connectance over time for each resource level

by using a generalized linear mixed model (binomial distribution;

link function = logit). We specified resources and the interaction

between time and resources as fixed effects, and included repli-

cate as a random effect. After that, we focused on contemporary

networks that were large enough to allow nestedness to vary (i.e.,

N < 1). We then used a linear mixed model to analyze the effect

of the resource level in determining changes in nestedness (logit-

transformed) over time. We specified connectance, network size,

and the interaction between time and resources as fixed effects,

and included replicate as a random effect. Finally, we used a linear

model to analyze the effect of connectance, resources, and their

interaction, on the nestedness of the global network. All statistical

analysis were conducted in R version 3.5.0 (R Core Team 2018).

Results
PHENOTYPIC DIVERSIFICATION AND

BETA-DIVERSITY

Phages diversified more than bacteria (F1,10 = 18.93, p = 0.001;

see Table S1). The number of novel phenotypes (i.e., unique infec-

tivity and resistance profiles) decreased over time (F1,116 = 31.42,

p < 0.001); however, the magnitude of the decay depended on

whether the organism was a phage or a bacterium (F1,116 = 18.01,

p < 0.001). Specifically, the number of novel phage phenotypes

decreased over time slower than bacteria, and much slower under

high than low resources (F1,116 = 12.70, p < 0.001).

Beta-diversity (i.e., changes in phenotypic composition over

time) was higher for phages than for bacteria (F1,20 = 9.08,

p = 0.007; see Table S2). We found no effect of the resource

level on beta-diversity (F1,20 = 1.31, p = 0.266). Interestingly,

the turnover component of beta-diversity (measured as the frac-

tion of the total beta-diversity explained by phenotypic turnover)

was higher for bacteria than for phages under low resources

(F1,20 = 7.00, p = 0.016).

PHAGE INFECTIVITY TO EVOLVING AND

COEVOLVING BACTERIA

In addition to previous analysis focused on characterizing coevo-

lutionary dynamics at the genotype level, we identify here the two

modes of coevolutionary dynamics at the phenotype level (i.e, re-

gardless of the abundance of their genotypes). The probability of a

phage infecting a bacterium depended on the interaction between

resources and the type of interaction (i.e., contemporary, bacteria

from future and phage from past, or bacteria from past and phage

from future; χ2
d f =2 = 10.15, p = 0.006). The magnitude and

direction of this effect depended on whether bacteria and phages

coevolved or bacteria (phages) were facing phages (bacteria)

either from the past or the future. Under low resources, bacteria

were more resistant to their contemporary than past and future

phages, which is consistent with fluctuating dynamics when

bacteria adapt more rapidly than do phages (Fig. 2). In contrast,

at high resources bacteria were more resistant to past phages

and became less resistant to contemporary and future phages,

which is a distinctive feature of arms race dynamics (Fig. 2).

Indeed, bacteria sampled at the end of the experiment (i.e., t = 6)

evolved resistance to all sampled contemporary phages in 83%

of the replicates under high resources, but only in 33% under low

resources.

NESTEDNESS

We found that the probability for a contemporary network to

be perfectly nested depended on network size (χ2
1 = 22.93,

p < 0.001; see Table S4). Small networks (size <= 50) were all

perfectly nested, regardless of the mode of coevolution. Because
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Figure 3. Nestedness of contemporary networks over time. We computed the nested pattern of infection among bacteria and phages

that were isolated in the lab at the same point in time (cartoon on the left). Each circle corresponds to a contemporary network, and

its diameter is proportional to network size (measured as the number of phages multiplied by the number of bacteria). The darker the

color of the circle, the higher the average infectivity (i.e., connectance). Regression lines represent how coevolutionary dynamics affect

nestedness over time at the average level of connectance and network size (shaded areas indicate the confidence intervals at 95%).

Cartoons at the right of the regression lines illustrate the infection patterns corresponding to the nestedness values predicted at the last

point in time for hypothetical contemporary networks with the same level of connectance (C = 0.3). Nestedness decreased over time

under fluctuating dynamics (red; left) and increased over time under arms race dynamics (blue; right).

neither coevolutionary dynamics nor time explained network

connectance (χ2
d f =1 = 1.31, p = 0.253 and χ2

d f =1 = 0.02, p =
0.879, respectively; see Table S5), we did not include a three-way

interaction term in the model. The change in nestedness over time

observed when considering the non-perfectly nested networks de-

pended on coevolutionary dynamics after controlling for network

size and connectance (F1,9 = 21.42, p = 0.001; see Table S6).

That is, nestedness decreased over time under fluctuating dynam-

ics and increased over time under arms race dynamics (Fig. 3).

Moving now to patterns in the global network (i.e., both

contemporary and noncontemporary phages and bacteria), the

nested pattern of bacteria–phage infections depended on the

interaction between coevolutionary dynamics and the con-

nectance of the global networks (F1,8 = 10.89, p = 0.011; see

Table S7). Specifically, networks with higher connectances were

more nested under fluctuating dynamics than under arms race

dynamics (Fig. 4).

Discussion
We have shown how coevolutionary dynamics influences the ar-

chitecture of bacteria–phage infection networks. First, we found

that phages diversify more than bacteria and that the turnover is

higher for bacteria than for phages under fluctuating dynamics.

Second, the two contrasting modes of coevolutionary dynamics

(i.e., fluctuating dynamics and arms race dynamics) driven by the

level of resources were also found at the phenotype level. Third,

the pattern of interactions among bacteria and phages depend on

coevolutionary dynamics at two different scales. At a local scale,

the nested pattern of interactions between coevolving bacteria and

phages decreases over time (i.e., niche partitioning is promoted)

under fluctuating dynamics, and increases over time under arms

race dynamics (i.e., niche overlap is promoted; Fig. 3). At a global

scale, the higher the network connectance, the higher the nested-

ness under fluctuating dynamics and the lower the nestedness

under arms race dynamics (Fig. 4). Let us discuss those main

findings one by one.

PHENOTYPIC DIVERSIFICATION AND

BETA-DIVERSITY

The decrease in phenotypic diversification over time—regardless

of the mode of coevolution—might be explained by coevolution

proceeding faster earlier (Bohannan and Lenski 1997; Morgan

et al. 2010) and resistance mutations with lower cost appearing at

later stages (Bohannan and Lenski 2000). Bohannan and Lenski

(1997) showed that, in coevolving populations of E. coli and phage

T4, multiple resistant types appeared quickly in bacterial popula-

tions at both high and low resources. Under these circumstances,

the community would initially increase its diversity, as resistant

mutants appear and phages evolve counterdefenses. However, this
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Figure 4. Nestedness of the global network. We computed the nested pattern of infections among all bacteria and phages resulting

from the entire coevolutionary experiment (global network with contemporary and non-contemporary bacteria and phages; cartoon on

the left). Each circle corresponds to a replicate under fluctuating dynamics (red) and arms race dynamics (blue). The diameter of each circle

is proportional to network size (measured as the number of phages multiplied by the number of bacteria). Lines represent the regression

lines of the best fit of a generalized linear model (shaded gray areas indicate the confidence intervals at 95%). The average infectivity

of the network (i.e., connectance) was different across replicates regardless of the mode of coevolution. Cartoons in the corners of the

figure illustrate the infection patterns corresponding to the nestedness value for hypothetical networks with high and low connectances

(C = 0.6 and C = 0.3, respectively). Nestedness increased with connectance under fluctuating dynamics, but decreased under arms race

dynamics.

first burst of adaptive radiation would be followed by a period of

decelerating coevolution, as resistance mutations with lower cost

appear, reducing the size of the phage population and thus its rate

of evolution.

Population abundances could explain why phages diversified

over time more than bacteria under arms race dynamics (i.e., at

high resources). Increasing concentrations of resources leads to

an increase in the abundance of the phage and its host (e.g.,

Bohannan and Lenski 1997; Forde et al. 2008). Furthermore, the

cost of mutating the bacterial receptor is lower when nutrients are

more abundant (Lopez-Pascua and Buckling 2008). Since large

populations produce more mutants and the cost of resistance is

lower, the selective pressure on phages is stronger under arms

race dynamics and hence, it is expected a higher diversification

over time.

Phenotypic composition changed very fast over time, sug-

gesting that coevolution occurs with fast rates relative to the gen-

eration time (Forde et al. 2004). Moreover, phenotypic turnover

in bacteria was greater under fluctuating dynamics than un-

der arms race dynamics, most likely as a consequence of the

frequency-dependent selection that might take place under fluc-

tuating dynamics—where selection continually favors rare phe-

notypes and disfavors common phenotypes.

COEVOLUTIONARY DYNAMICS

By measuring the change in the infectivity of phage populations to

a bacterial population through time, we found a strong signature at

the phenotype level in how resources drive coevolutionary dynam-

ics (Fig. 2). Specifically, we found an ever-increasing reciprocal

investment in defense and counterdefense at high resources (arms

race dynamics), and selection favoring alternative phenotypes in

bacteria and phages over time at low resources (fluctuating dy-

namics). Note that characterizing coevolutionary dynamics at the

genotype level (i.e., when the frequency of genotypes is consid-

ered) did show fluctuating dynamics, but in a different way (see

Lopez-Pascua et al. 2014). That is, instead of promoting different

phenotypes of bacteria and phages over time, selection favored

host range fluctuations (i.e., the most abundant phages shifted

between generalists and specialists over time).

NETWORK STRUCTURE

The way the level of resources modulates the ecological con-

sequences of the cost of resistance and infectivity (Koskella

et al. 2012) might explain the decrease in the nested structure

of contemporary networks over time under fluctuating dynamics

(Fig. 3). Under low resources, bacterial densities are expected to

be low, and therefore, the likelihood for a phage to encounter a
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susceptible bacterium would be low. Because evolving infectivity

traits likely comes at the price of a slight decrease in the com-

petitive ability for limiting resources (see Bohannan and Lenski

2000), evolving the ability to infect many hosts (i.e., expanded

host-range) might come at a higher cost than evolving a single trait

to infect only a few (Woolhouse et al. 2001; Leggett et al. 2013).

Therefore, natural selection would favor specialization in phages

(i.e., niche partitioning). This would explain why nestedness de-

creased over time under fluctuating dynamics. When resources

are abundant, the rate of encounters among bacteria and phages

will be much higher, and the fitness benefits of establishing a

successful infection would overcome the costs of maintaining in-

fectivity traits. This would explain why nestedness increased over

time under arms race dynamics.

This result contrasts with the findings by Poisot et al. (2011),

who reported high nestedness at low resources (i.e., under fluc-

tuating dynamics). Two points can potentially explain this diver-

gence. First, here we are using unique infectivity profiles, while in

Poisot et al. (2011), as in the rest of previous studies, researchers

used isolates that may contain the very same genotype. Second, in

Poisot et al. (2011), there was competition neither among bacteria,

nor among phages, which makes the comparison more difficult.

In addition, these contrasting patterns in nestedness over time

are consistent with previous explanations based on the genetic ar-

chitecture underlying the mechanism of infection (Flores et al.

2011; Beckett and Williams 2013; Weitz et al. 2013; Koskella

and Brockhurst 2014). When interactions are driven by a gene-

for-gene mechanism of infection, mutations in bacteria would

confer resistance to recently evolved phages while maintaining

resistance to past phages. Likewise, phages would evolve infec-

tivity traits without losing the ability to infect ancestral bacteria.

Therefore, the set of bacteria that a phage can infect are nested

over time. That is, the host range of the phages are subsets of

each other (i.e., niche overlap). This process would lead to nested

interaction networks. In contrast, when interactions are driven

by a matching-alleles mechanism of infection, bacteria would

evolve resistance to a single phage phenotype and would lose any

evolved resistance to other phages, whereas mutations in phages

would confer infectivity against single bacterial phenotypes at the

cost of an entire loss of infectivity against ancestral phenotypes.

This process would lead to less nested, or compartmentalized net-

works (i.e., niche partitioning), where the host range of the phages

are distinct from each other. Interestingly, it is worth noting that

experimental studies (Forde et al. 2008) and mathematical models

(Hochberg and van Baalen 1998) have suggested that the way the

level of resources (and hence, coevolutionary dynamics) affects

the cost of resistance depends also on the genetic architecture of

the mechanism of infection.

At the level of the global network, the degree of nestedness

decreased with connectance under arms race dynamics but

increased with connectance under fluctuating dynamics (Fig. 4).

Our interpretation is that when coevolution resulted in high

average infectivity (i.e., high connectance), bacteria evolved

resistance earlier under arms race dynamics than under fluctuat-

ing dynamics—because the fitness benefits of resistance would

overcome the costs of evolving resistance traits. Therefore, at

high resources phages evolved and diversified quickly from the

beginning, which allowed them to differentiate from each other

over time (i.e., low nestedness). In contrast, at low resources

bacteria evolved resistance later on and phages did not have

much time to diverge from each other (i.e., high nestedness).

It might be argued that the way we inferred phenotypes from

isolates in the laboratory is misleading. Note, however, that in a

previous study, Hall et al. (2011) sequenced the tail fiber gene

of the phage and reported that, on average, 40% of the phage

isolates were distinct genotypes. In our study, on average 48% of

the phage isolates were identified as unique infectivity profiles.

This result suggests that each distinct infectivity profile (i.e., phe-

notype) might in fact correspond to a distinct genotype.

Finally, the results here presented have one limitation that is

worth stressing. As with all the previous papers on bacteria–phage

coevolution, our work is based on isolation-based approaches.

Essentially, this means that the interactions within a network are

inferred from pairwise cross-infection patterns. As in other fields

of ecology and evolutionary biology, our perception is very much

constrained by such a pairwise approach. As a consequence, we

know very little about what component of species coexistence

or coevolutionary dynamics is due to indirect or higher-order

effects (Bairey et al. 2016; Guimarães et al. 2017; Levine et al.

2017). Future work should reduce this gap. Only then, we will

be well positioned to fully understand the community context

of coevolution.
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