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1 Introduction

1.1 Networks as complex systems

Ramon Margalef wrote in 1991 a book chapter entitled “Networks in Ecology”.
There, he advanced a series of ideas on the network paradigm, a paradigm
that has grown popular in the last five years. Specifically, Margalef advocated
a multidisciplinary comparison of different network types, something which
is now common practice in the field of complex networks. He also envisioned
scale-invariant properties of ecological networks, an idea that has been con-
firmed by the finding that complex networks are very heterogeneous: one can
find nodes with numbers of links spanning several scales. In this chapter, we
describe the network approach in ecology by reviewing recent discoveries in
this field. These discoveries have been initiated by the study of non-biological
networks such as the Internet, extended to biological networks such as gene
expression networks or metabolic networks, and also applied to describe the
complexity of ecological communities. Here, we will focus on the implications
for ecology.

During the twentieth century, graph theory (see Harary 1969; Bollobéas
1998) has developed into a substantial body of knowledge. In the last few
years and in spite of a long tradition of network analysis in sociology (see
Watts 2004 for a recent review), an increasing number of complex systems
have been described and represented as networks (i.e., a set of nodes con-
nected by links; see Fig. 1). The network approach pervades all scientific
fields (Strogatz 2001) as a metaphor or description of the real world com-
plexity. Physical, social, and more recently, biological systems have benefited
from the mathematical framework of graph theory that underlies the network
paradigm. In this way, the World Wide Web (Albert, Jeong, & Barabasi
1999; Huberman & Adami 1999), the Internet (Doyle et al. 2005), the world-
wide air transportation network (Guimera & Amaral, 2004; Guimera et al.
2005), social networks of acquaintance or other connections between individ-
uals (Newman, Watts, & Strogatz 2002; Liben-Nowell et al. 2005), scientific
collaboration networks (Newman 2001; Barabasi et al., 2002), the network of
human sexual contacts (Liljeros et al. 2001), metabolic networks (Jeong et
al. 2000; Ravasz et al. 2002), protein networks (Jeong et al. 2001), gene reg-
ulatory networks (Davidson 2002; Luscombe, 2004), food webs (Paine 1966;
Cohen 1978; Pimm 1982), plant-animal mutualistic networks (Bascompte et
al. 2003; Jordano et al. 2003), and many others, are examples of different
systems studied under this common framework. This represents a really mul-
tidisciplinary research agenda, where concepts and tools applied to one field
have been successfully imported to other fields in a very synthetic, Margale-



fian way.

No other example than molecular biology justifies the network approach
as a new research agenda instead of as merely a different representation or
diagram. Molecular biology, as particle physics, has had an extremely re-
ductionist approach. Scientists have isolated a few genes and studied their
produced proteins or activity patterns. However, gene regulation is emi-
nently a coordinated enterprise where some genes act regulating other genes.
Only with the onset of computer capacity, using multidisciplinary approaches
combining experimental work in the lab with numerical analysis of simple
network models, scientist have started to explore whole networks of genetic
activity. One example is the gene network regulating the development of
the sea urchin (Davidson et al. 2002). Since the publication of that study,
molecular biologists have kept describing whole genetic networks in the most
influential scientific journals, emphasizing structural properties which largely
affect their stability (e.g. the spread of deleterious effects of mutations).
Clearly, this is knowledge that could not be obtained by studying isolated
genes. Diseases or development, for example, may be more related to the
large scale architecture of regulation networks than to the proteins produced
by a few such genes.

Ecosystems have been since long ago described as networks. Lindenmayer,
Odum, Margalef, and many others have described communities as graphs of
energy transfer. Food webs are a common theme in ecology with a long
tradition (Cohen 1978; Pimm 1982). Food webs have pervaded ecological
research as a way of representing community complexity. However, as with
other themes in ecology, the intensity and emphasis has changed through
the last decades. Here we will focus on the most recent outbreak of network
thinking in ecology, the one using ideas from the recent field of complex
networks.

1.2 Network structure and implications for its dynamics

Comparative studies of networks from different branches of science (from
the pioneering work by Watts & Strogatz 1998) show common structural
properties (Newman 2003 for a review). These comparative studies have
used several descriptors of network complexity. In what follows we describe
a few of such descriptors and how they have unravel different layers of network
complexity.

One of the simplest ways to describe the statistical properties of a net-
work is by plotting its degree (the number of links per node) distribution.
Large real-life networks may show several degree distributions reflecting their
architecture (e.g., Amaral et al. 2000) and robustness (e.g., Albert, Jeong, &



Barabasi 2000). Some networks such as the electric power-grid of Southern
California (Watts & Strogatz 1998) show an exponential distribution. Other
networks such as the World Wide Web (Albert, Jeong, & Barabasi 1999)
and the worldwide air transportation network (Guimera et al. 2005) show a
power-law distribution and a truncated power-law (broad-scale) distribution,
respectively. An exponential distribution, characterized by a fast decaying
tail, implies that nodes have a well-defined average number of links. This
is the reason this distribution is also called single-scale: the average number
of links per node define the scale of the degree distribution. A power-law
distribution, on the other hand, indicates a much higher variability in the
number of links per node. That is, the bulk of nodes have a few links, but a
few nodes are much more connected than expected by chance. A power-law
distribution is right-skewed, that is, it has flat tails. Now the average num-
ber of links per node is not informative at all because the variance is much
higher. This is the reason this distribution is also called sale-free: it has no
characteristic scale, we can find nodes with a number of connections spanning
several scales. An intermediate situation is represented by the broad-scale
degree distribution, characterized by a power-law regime followed by a sharp
cutoff, like an exponential or Gaussian decay of the tail.

The interest of the degree distribution stems from two facts. First, the de-
gree distribution uncovers that different types of networks have the same ar-
chitecture, which suggests common organizing principles. Second, the shape
of the degree distribution greatly affects the robustness of the network to
node deletion (e.g., Albert, Jeong, & Barabasi 2000). Scale-free, heteroge-
neous networks are very robust to random removal of nodes because the few
hubs act as the glue bringing together the whole network. Since hubs are
uncommon, the likelihood of knocking down by chance such hubs is small.
However, hubs are also the Achilles heel of scale-free networks: these net-
works are very fragile to the removal of the most connected nodes (deliberate
attacks on the hubs). This robustness/fragility pattern grows stronger the
highest the skewness of the degree distribution.

As noted above, the degree distribution is also informative of potential
build-up mechanisms originating the observed network. For example, an
exponential degree distribution is the hallmark of a random network. One can
envision such a network growing by the following simple rule. Starting with
a few randomly connected nodes, at each time step a new node is introduced
and interacts with an average number of pre-existing nodes randomly chosen.
On the other hand, the basic recipe to build a scale-free network is one
in which each new node tends to interact preferentially with the already
most connected nodes in a "rich get richer fashion." This is the preferential
attachment model proposed by Barabasi & Albert (1999). When there are

4



constraints on such preferential attachment (filtering information), such as
an imperfect knowledge of the whole network, a broad scale distribution
emerges.

Another structural property shared by some networks is the small-world
effect (Watts & Strogatz 1998), characterized by i) a high clustering coeffi-
cient (i.e., a high probability that two nodes connected to a common node
are connected to each other) compared with a random graph, and i) a short
path length, meaning that most pairs of nodes are connected by a short path
through the network. Specifically, the diameter of the network, quantified
by the average shortest distance between all pairs of nodes (i.e., the smallest
number of links that must be followed to go from one node to the other),
increases logarithmically with the number of nodes (as for random graphs).

The small-world effect has implications for the dynamics of processes
taking place on networks. The spread of information or a disease across the
network will be fast. If it takes only “six steps” for a rumor to spread from any
person to any other (from the earlier empirical study conduced by Milgram
1967), then the rumor will spread much faster than if it takes a hundred
steps. This also affects the time it takes for a disease to spread throughout
a population (Pastor-Satorras & Vespignani 2001).

Studies of the effects of structure on network dynamics are still in their
infancy. Much more progress in this direction must be made to advance in
the knowledge of complex systems behavior.

2 Insight from ecological networks

The network approach, as noted above, is a very useful framework to repre-
sent many physical, social, and biological systems. But, in spite of its poten-
tial, network analysis techniques have only been incorporated in ecology (for
a recent review see Proulx, Promislow, & Phillips 2005) to characterize food
webs (see e.g., Paine 1966; Pimm 1982; Cohen, Briand, & Newman 1990) and,
more recently, plant-animal mutualistic interactions (see e.g., Bascompte et
al. 2003; Jordano et al. 2003). While in both fields nodes represent species
and links depict ecological interactions, incipient studies focus on spatial net-
works (Urban & Keitt 2001) in which nodes represent discrete habitat patches
and links depict movements of individuals, colonizations, or gene and seed
dispersal.

In the following sections we summarize the main results derived from
applying the network approach to the following fields of ecology: food webs,
plant-animal mutualisms, and spatial networks.



2.1 Food webs

Ecology has a long tradition studying the structure of food webs as an impor-
tant property for understand the dynamical stability of communities (e.g.,
Paine 1966; Cohen 1978, Pimm 1982). Food webs depict trophic relation-
ships between species, that is, who eats whom. Generally, food webs have a
much higher connectance (the fraction of all possible links that are realized)
and a much smaller size than other networks studied, which has important
implications for network topology (see Dunne, Williams, & Martinez 2002
for a recent review).

Some recent work (e.g., Montoya & Solé 2002; Dunne, Williams, & Mar-
tinez 2002) has focussed on the degree distribution shown by real food webs.
Dunne, Williams, & Martinez (2002) analyzed a broad range of 16 high-
quality food webs from a variety of aquatic and terrestrial ecosystems to
investigate whether food webs displayed small-world effect and scale-free
structure (i.e., the topology characteristic of many other real world networks).
They demonstrated that although some food webs had small-world and scale-
free structure (the largest networks with the lowest connectivity; Fig. 2a),
most did not. Food webs displayed a variety of functional forms related with
connectance and network size, but the bulk of food webs showed distribution
tails dropping off fast, as expected for exponential distributions (see Fig. 2b).

The degree distribution uncovers only a first description of structure. It
is a statistical description of the probability of a randomly picked species in-
teracting with k& other species, but it does not describe the identity of these
species. As Ravastz et al. (2002) first described for genetic networks, two net-
works can show the same degree distribution but have different architectural
designs (consider for example two species interacting with n and m species:
in one case these two subsets of species can be highly overlapping, and in
another these two subsets may contain completely distinct species). Parallel
studies on food webs looked at a deeper level of structure beyond the one de-
picted by the degree distribution (Melian & Bascompte 2002, 2004). Melian
& Bascompte (2002) applied a measure of correlation between the number of
links of each species and the average number of links of the species they inter-
act with. This connectivity correlation measure had previously been applied
by physicists studying the Internet (Pastor-Satorras, Vazquez, & Vespignani
2001) and biologists studying protein networks (Jeong et al. 2000). Whereas
two highly connected nodes are unlike to be connected between each other
in protein networks (Jeong et al. 2000), the reverse happens in food webs
(Melian & Bascompte 2002). On the other hand, Melian & Bascompte (2004)
studied how links are distributed within and between subwebs (a k subweb is
a subset of species that are connected to at least k species from the same sub-



set, see Fig. 2¢). The k subweb frequency distribution decays as a power law.
The most dense subweb has the most interactions, despite containing a small
number of species (see Fig. 2¢). Melian & Bascompte’s (2004) results sug-
gest a cohesive organization, that it, a high number of small subwebs highly
connected among themselves through the most dense subweb. This cohesive
topological organization may decrease the probability of network fragmenta-
tion when species are removed (Solé & Montoya 2001; Dunne, Williams, &
Martinez 2002).

What implications does food web structure have in relation to the like-
lihood of trophic cascades? Beyond properties derived from binary food
webs in which trophic links are either present or absent, the structure of the
strength of species interactions may help bridge the gap between food web
structure and dynamics (Berlow et al. 2004). In a recent work, Bascompte,
Melian, & Sala (2005) show that interaction strengths are structured non-
randomly in a large Caribbean food web. In the largest and most resolved
food web, the co-occurrence of strong interactions on two consecutive levels
of food chains occurs less frequently than expected by chance, and when they
occur, these strongly interacting chains are accompanied by strong omnivory
more often than expected by chance. The distribution of interaction strength
in these trophic modules (or motifs) reduces the likelihood of trophic cascade
after the overfishing of top predators.

2.2 Plant-animal mutualistic networks

The bulk of mutualistic studies have focused on a single plant-single animal
interaction, i.e. pairwise coevolution. There are, however, some community-
level studies of mutualisms (e.g., Feisinger 1978; Waser et al. 1996), which
have recently benefited from a network perspective (Olesen & Jordano 2002;
Bascompte et al. 2003; Jordano, Bascompte, & Olesen 2003; Vazquez &
Aizen 2004; Memmott, Waser, & Price 2004; Vazquez 2005; Olesen et al.
2006).

Plant-animal mutualistic networks are described by a different type of
network than food webs. While in food webs there is only a single type
of node and all species can, in principle, be connected to any other, plant-
animal networks correspond to the so-called bipartite networks. Bipartite
networks are defined by two distinct sets (plants and animals) with interac-
tions between, but not within sets (see Fig. 3e). Other types of bipartite
networks are social networks (e.g., linking people to the social events they
attend, see Newman, Watts, & Strogatz (2002)). Plant-animal mutualistic
networks can be described by two basic structural properties. First, they are
very heterogeneous. That is, the bulk of species have a few interactions, but
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a few species are much more connected than expected by chance (Jordano,
Bascompte, & Olesen 2003). Second, mutualistic networks are highly nested,
that is, specialists interact with proper subsets of the species interacting with
generalists (Bascompte et al. 2003).

We can characterize network heterogeneity studying the degree distribu-
tion. Because mutualistic networks are bipartite networks, we can represent
the degree distribution for both plant and animal species. Jordano, Bas-
compte, & Olesen (2003) described the topology of 29 plant-pollinator and 24
plant-seed disperser networks in natural communities. They showed that the
bulk of mutualistic networks follow a truncated power-law degree distribu-
tion, and almost the total of the rest followed a power-law degree distribution.
They suggested that constraints in the addition of links such as morpholog-
ical mismatching or phenological uncoupling between mutualistic partners,
restrict the number of interactions established and hence, caused deviations
from scale-invariance. Other potential explanations for the truncated distri-
butions deal not with external constraints on the preferential attachment, but
on the bipartite nature of this networks: differences on the original core of
species, and differences in size between plants and animals (Guimeraes et al.
2005). This is a striking difference in relation to food webs which, as noted
above, seem to be described by exponential degree distributions. One po-
tential explanation for this difference steams from the fact that plant-animal
networks are much more resolved than traditional food webs, although other
biological differences could also play a role.

Nestedness in mutualistic networks has been investigated by Bascompte
et al. (2003) comparing real networks with two different null models. In
their first null model, connections are randomized probabilistically keeping
only the observed total number of interactions. Their second null model,
probabilistically maintains the observed total number of interactions and
approximately maintains the number of interactions per species (degree).
Bascompte et al. showed that in real mutualistic networks there is a tendency
for specialist species interact with generalist ones and conversely, beyond
random expectation (see Fig. 3d).

What consequences this structure has for the persistence and stability of
plan-animal communities? There are a few studies attempting to relate mu-
tualistic network structure with dynamics. For example, Memmott, Waser,
& Price (2004) and Jordano, Bascompte, & Olesen (2006) look at the network
responses to species deletion. These studies followed early work on network
robustness in the Internet (Albert et al. 2000) and food webs (Solé & Mon-
toya 2001). However, the first paper exploring dynamical implications of real
network structure for the persistence of mutualistic communities is the study
by Fortuna & Bascompte (2006). They developed a patch-model of a whole
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plant-animal mutualistic community and explored the role of network struc-
ture for the response of a metacommunity to habitat loss. To assess the role
of network structure, Fortuna and Bascompte (2006) built three versions of
the metacommunity model. In the first version, they used the exact network
of interactions of two real mutualistic communities. In the other versions,
they randomized the observed network of interactions using the two different
null models described above (the first null model lacks degree and nested-
ness, and the second null model lacks nestedness but not degree). They
showed that the community response to habitat loss is affected by network
structure. Real communities started to decay sooner than random commu-
nities, but persisted for higher habitat destruction levels, and also there was
a destruction threshold at which the community collapsed (Fig. 4).

The above described topological properties of real networks can explain
the different rate of species decline. The high heterogeneity in species degree
imply that the last few species going extinct are the most generalist species.
Since they rely on so many species, some of the few available patches will
at least contain one of the species they interact with. Similarly, for the
very same reason, some species are less connected than expected by chance.
These specialists go extinct first. Nestedness, on the other hand, implies
two properties. First, a nested matrix is highly cohesive, because generalist
plants and animals interact among themselves. This creates a core in which
a small set of species leads the bulk of interactions (Bascompte et al. 2003).
This dense core is very robust to habitat loss. Second, these matrices embed
asymmetric interactions in the sense that specialist species tend to interact
with the more generalist species (both for plants and animals; Bascompte et
al. 2003; Vazquez & Aizen 2004). Network structure has also been recently
adduced to explain empirical plant species decline with habitat loss in a
plant-pollinator community (Ashworth et al. 2004).

What consequences does this structure have for coevolution? (see Bas-
compte & Jordano 2006). It is well accepted that the interactions between
plants and the animals that pollinate them or disperse their seeds have played
a major role in the generation of terrestrial biodiversity. Traditionally, stud-
ies on coevolution have focussed on highly specific pairwise interactions. The
alternative of one-to-one coevolution up to the recent years has been the
concept of diffuse coevolution (Janzen 1980) stating that interactions are
not species-to-species, but guild-to-guild. If there is no structure, that is,
plants and animals interact randomly, then a concept such as diffuse coevo-
lution may be enough to describe coevolutionary interactions in species-rich
communities. If there is structure, however, the shape of this structure will
certainly lead to an alternative view of coevolution. The nested matrix has
a dense core of species that capture the bulk of interactions. The species



forming the core are going to highly determine the selective forces exerted
on other more specialist species which will become attached to such a core.
The network perspective has provided analytic tractability to coevolution in
multispecific communities (Thompson 2005).

2.3 Spatial networks

The network approach complements previous levels of spatial description.
Spatial processes can be described by means of spatially implicit or spatially
explicit models. Spatially implicit models, although allow analytical solu-
tions, are necessarily simple. Spatially explicit models, on the other hand,
can account for spatial detail and local dispersal, but have to rely on nu-
merical simulations. The spatial network approach is a spatially explicit
landscape description which uses information on network topology. That is,
its main advantage is to import concepts and measures from complex network
theory.

Previous studies already suggested the suitability of the network approach
to the study of spatial ecology (e.g., Cantwell & Forman 1993; Urban &
Keitt 2001), but only few attempts incorporate basic properties of graph
theory (Bunn et al 2000; Urban & Keitt 2001; Fagan 2002). In some cases,
it is convenient to link habitat fragments whenever movement from one to
another can be performed by a target species, such as landscape network
models (Keitt 2003) and spatially realistic metapopulation models (Hanski
2001).

In a recent study (Fortuna, Goémez-Rodriguez, & Bascompte 2006), a
large spatial network of temporary ponds which are used as breeding sites
by several amphibian species is identified and analyzed (see Fig. 5a). The
authors investigated how the structural properties of the spatial network
change as a function of the amphibian dispersal distance as drought increases
(Fig. 5b-d). Using measures of graph theory to characterize the network
topology, Fortuna, Gémez-Rodriguez, & Bascompte (2006) suggested that
the alteration by drought of this undisturbed network not only reduced the
total number of ponds where amphibians could reproduce and successfully
recruited metamorphosing juveniles. It also changed the structural properties
of the remaining pond network, with implications for amphibian persistence.
The observed spatial structure of temporary ponds was robust to drought
compared with similar random structures. This allows the movement of
amphibians to and between flooded ponds, thus increasing the probability of
reproduction even in dry seasons (Fig. 6).

Analysis of network topology provide a new and straightforward way to
quantify the robustness of a patchy population to habitat loss and the identi-
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fication of “keystone” patches that are critical to landscape connectivity and
hence population persistence (Urban & Keitt 2001; Keitt 2003). The appli-
cation of existing network approaches to spatial processes can yield valuable
insight. Network analysis is a powerful tool for analyzing real landscapes and
can also be used as a basis for building more complex population viability
models. Optimization techniques to select a subset of available habitats that
maximize species persistence can be based on a network approach (see Cabeza
& Moilanen 2001 and references therein). We think that detailed spatial net-
work structure can also form a basis for constructing new metapopulation
models. Future progress, however, will depend on a synergistic interplay be-
tween the network structure of the landscape and the underlying biological
processes.

3 Unity in diversity: towards ecological net-
works

We have seen briefly the main issues concerning food webs, plant-animal
mutualistic networks, and spatial networks. Structural implications for dy-
namics have been explored separately for each community level. But ecolog-
ical systems are more complex, combining different type of interactions and
so composed networks. When available data allows us to integrate multi-
ple interaction types in species-rich communities, we will be ready to study
ecological networks in a broader context.

A pretty recent study has incorporated trophic and mutualistic inter-
actions in a simple module. Knight et al. (2005) have showed that fish
indirectly facilitate terrestrial plant reproduction through cascading trophic
interactions across ecosystems boundaries. The abundance of larval dragonfly
in ponds was reduced by fish, leading to fewer adult dragonflies that consume
insect pollinator nearby. As a result, the authors showed that plants near
ponds with fish received more pollinator visits and were less pollen limited
that plants near fish-free ponds.

Melian, Bascompte, & Jordano (submitted) have synthesized and ana-
lyzed the trophic and mutualism plant community (plant-herbivore, plant-
pollinator, and plant-seed disperser interactions) from Doniana National Park
(Southern Spain). Their results suggest that a plant exposed to pollinators is
visited significantly by herbivores, and this structure alters the persistence of
the community. This type of studies can address questions as whether com-
munities with different types of interactions are randomly assembled, and
what implications this structure has for the dynamics of the whole commu-
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nity. Traditionally, studies on community stability have focussed on a single
interaction type. Combining different interaction types can serve to explore
to what extend community stability has more to do with how different inter-
action types are combined than on patterns from a single interaction type.
This can also balance the bias of community-wide competition and predation
studies. If plant-animal mutualistic interactions are so important for biodi-
versity maintenance, it is worth incorporating such mutualistic interactions
into community criteria for persistence.

There is one more aspect we will like to emphasize in relation to the cur-
rent status of studies on ecological networks. Traditionally, the wide majority
of ecological processes have been studied without any consideration of the
spatial dimension. As we have showed above, the network approach can also
be a useful tool for the study of spatial processes. Because interactions among
species take place in a spatial dimension (and in a time), the framework of
ecological networks can only be complete if we take into account the spatial
network in which ecological interactions occur (Fig. 7). In this way, we will
be moving towards a more realistic description (networks of networks).

In summary, this chapter has emphasized recent work on the field of
complex networks with implications in ecology. The network perspective, as
many others, was long ago envisioned by Margalef. He saw the potential of
networks, and some of his views have been confirmed in the last few years.
He also emphasized aspects of ecological networks which need still to be
developed. Specifically, he advocated to unify what he saw as the two main
approaches in networks, one focussing on the nodes and the other focussing
on the flows. Margalef’s approach was more dynamic, and he emphasized
the need to quantify networks, that is, to use interaction strength measures.
More importantly, Margalef also saw the limitations of the network approach,
and would be a nice tribute to his immense wisdom to recall his critic view in
here. Margalef (1991) writes “The concept of network has been imposed on
ecology from outside and ’sold” as a necessary reference to construct models.
Is it worthwhile, therefore, to spend time on networks? Perhaps only to
learn not to care about nets that are too simple. Maybe just to have some
fun”. With his unique self-criticism, Margalef advanced points of view so
innovative that touched us in ways we could not fully grasp until years after.
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6 Figure legends

Fig-1. Map of protein-protein interactions (modified from Jeong et al. 2001)
showing the complex arquitecture of biological networks.

Fig-2. Cumulative degree distribution of the Ythan esturary (a) and the
Silwood Park food-webs (b). n is the number of species, and C' is the con-
nectance (the number of links in the web divided by the maximun number
of possible links including cannibalism and mutual predation). ¢) Graph de-
picting k subwebs (i.e., subwebs where each species has at least k interactions
within that subset) in the Ythan estuary food web (modified from Melidan &
Bascompte 2004). The most dense k& subweb (in the middle of the graph)
has the most interactions, despite containing a small number of species.

Fig-3. (a-d) Plant-animal mutualistic interaction matrices (modified from
Bascompte et al. 2003). Numbers label plant and animal species (which
are ranked in decreasing number of interactions per species). A filled square
indicates an observed interaction between plant i and animal j. a) Perfectly
nested matrix. b) Random matrix. ¢) Compartimentalized matrix. d) Real
plant-pollinator mutualistic matrix (data compiled by J. M. Olesen and H.
Elberling). e) Bipartite graph depicting a real plant-seed disperser mutualis-
tic network (data compiled by P. Jordano). Species are represented by nodes
arranged along the vertical lines (plants (25) on the left and animals (33)
on the right) and shown in decreasing number of interactions per species. A
plant and an animal interact if they are linked by a line.

Fig-4. Effect of habitat loss (d) on the fraction of species surviving for the
real network (solid line; average of 10 replicates), and the randomizations
using two null models (dotted line and broken line, respectively; average of
10 replicates), for both the plant-pollinator network (a), and the plant-seed
disperser network (b). Inset names indicate the taxa represented (modified
from Fortuna & Bascompte 2006).

Fig-5. a) Spatial location of the ponds (circles; size is proportional to area
on a logarithmic scale) in Donana National Park. b-d) Schematic represen-
tation of a subset of ponds linked by different dispersal distances d of three
hypothetical amphibian groups (b, d = 100 m; ¢, d = 500 m; and d, d = 1000
m). Black nodes and white nodes represent flooded and dry ponds, respec-
tively. Solid lines indicate directed links between dry and flooded ponds.
Broken lines represent undirected links between flooded ponds. Note that we
can identify network components (i.e., groups of interlinked flooded ponds)
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at different scales (modified from Fortuna, Gomez-Rodriguez & Bascompte
2006).

Fig-6. Probability to move from a dry to a flooded pond for three dispersal
distances along all the gradient of drought intensity. Solid line, broken line,
and dotted line represent real data, null model 1 (randomizing the spatial
locations of the ponds), and null model 2 (randomly allocating the sizes of
the ponds but keeping their spatial locations), respectively (modified of For-
tuna, Gomez-Rodriguez & Bascompte 2006).

Fig-7. Schematic framework depicting different levels of ecological study. On
one hand, at local patch scale (on the left, from up to down), studies can
focus on single species, pairwise interacting species, multispecies with a single
type of interaction, and multispecies with more than one type of interactions
(ecological communities). On the other hand, at spatial network scale (on
the right, from up to down), there are less studies considering the spatial
dimension in which the former ecological systems are embedded. Beyond
pairwise spatial interactions, food web studies and, more recently, plant-
animal mutualistic networks (both considering one single type of interaction),
should be integrated within the spatial network in which they are inhabited.

20



7 Figures

Fig. 1
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Fig. 2
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Fig. 4
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Fig. 5
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Fig. 6
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Fig. 7
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